
c�Copyright ����

Michael VanHilst

Role Oriented Programming for Software Evolution

by

Michael VanHilst

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

����

Approved by

�Chairperson of Supervisory Committee�

Program Authorized

to O�er Degree

Date

University of Washington

Abstract

Role Oriented Programming for Software Evolution

by Michael VanHilst

Chairperson of Supervisory Committee

Professor David Notkin

Computer Science and Engineering

This thesis addresses the problem of changing requirements in software evolution� It

presents a method of development and change based on roles	 where a role	 in object

oriented development	 is a part of an object that addresses a particular concern or

requirment� The concept of a role was originally used in design analysis by Trygve

Reenskaug� In this research	 we extend it
s use into implementation�

The contributions of the research include a development process that takes a set of

use case requirements and produces an implementation composed of role components	

a set of implementation idioms that separate functional concerns from structural and

compositional concerns	 and several diagrams to bridge the gap between abstract

design and concrete implementation� The feasability of the approach is demonstrated

with an e�ciant method of implementation using C�� templates�

TABLE OF CONTENTS

List of Figures vi

Chapter �� Introduction �

��� Supporting Change �

�� Change in Software Evolution �

��� Object Oriented Development �

����� Design �

���� Implementation �

��� A Role Oriented Approach �

��� Roles and Change ��

��� Our Approach �

��� An Implementation ��

��� Our Contribution ��

Chapter �� A Use Case Example ��

�� Use Cases ��

� The Container Recycling Machine �

�� Changes to the Container Recycling Machine � � � � � � � � � � � � � � �

Chapter �� Problems of Change in Object Oriented Programming ��

��� Object Oriented Design ��

����� Entities From the Problem Domain � � � � � � � � � � � � � � � ��

���� Objects of Change �

�� Object Oriented Implementation ��

���� Encapsulation and Inheritance � � � � � � � � � � � � � � � � � � ��

��� Multiple Inheritance ��

���� Interface Types ��

��� Patterns ��

��� Summary and Conclusion ��

Chapter �� Roles and Collaborations� A Better Approach to Design ��

��� Collaborations and Roles ��

����� De�nitions ��

���� Properties ��

����� Related Uses and Concepts ��

�� Issues and Role Re�nement ��

��� Managing Complexity and Supporting Reuse � � � � � � � � � � � � � � �

��� Supporting change ��

Chapter �� Role Oriented Implementation �	

��� Roles as Class Templates in C�� ��

�� C�� Issues �

���� Typedef Aliasing Versus Class De�nition � � � � � � � � � � � � �

��� Callbacks to Methods ��

��� Discussion ��

Chapter
� Idioms for Role Oriented Implementation
�

��� Idioms for Semantic Issues of Composition � � � � � � � � � � � � � � � ��

����� Method Call Interception ��

���� Role Decomposition ��

����� Lifters �

ii

����� Composable Data Structures ��

�� Idioms for Syntactic Issues of Composition � � � � � � � � � � � � � � � ��

���� Disjoint Name Spaces and Repeated Inheritance � � � � � � � � ��

��� Name and Signature Translation � � � � � � � � � � � � � � � � � �

���� Type Pre�xing ��

���� Forward Reference ��

���� Dynamically Bound Methods � � � � � � � � � � � � � � � � � � ��

��� Idioms for Control Flow ��

����� Implicit Invocation ��

���� Proxies and Handles ��

����� Pre� and Post� Event Propagation � � � � � � � � � � � � � � � � ��

����� Initialization ��

��� Discussion ��

Chapter 	� The Process of Role Oriented Development �

��� Phase �� De�ning Collaborations and Roles � � � � � � � � � � � � � � ��

�� Phase � Composing Roles Within Objects � � � � � � � � � � � � � � � ��

��� Phase �� Connection Between Objects and Other Structural Issues� � ��

��� Phase �� Implementation ��

��� Analysis ���

Chapter �� The Process of Role Oriented Change ���

��� Adding the Validate Item Use Case ��

�� The Item Stuck extension ��

��� Discussion ���

Chapter �� Experience Developing a Medium Sized Application ��	

��� Description ���

iii

����� Scalar Images and Pseudocolor Display � � � � � � � � � � � � � ���

���� Astronomy ���

����� Intensity Scaling ���

����� Auxiliary Displays ���

����� Overall Description ���

�� History ���

��� The Work ���

��� The Experience ���

��� Analysis ���

����� Complexity ���

���� Compiling and Debugging ���

����� Change ��

Chapter ��� Related Work �
�

���� Theory ���

��� Design Methods ���

���� Implementation Mechanisms ���

������ Generators and Preprocessing � � � � � � � � � � � � � � � � � � ��

����� Dispatching and Metaclasses ���

������ Inheritance and Parameterization � � � � � � � � � � � � � � � � ���

Chapter ��� Conclusion and Future Work �	�

���� Supporting Change ���

��� Future Directions and Open Questions � � � � � � � � � � � � � � � � � ���

����� Implementation ���

���� Scalability ���

����� Tool support ���

iv

����� Visual Programming ���

����� Reuse ���

����� Hybrid approaches ���

����� Legacy code ���

Bibliography ���

Appendix A� A List of Criteria for Role Implementation ��	

Appendix B� Display Application Instantiation Lists and Main Routine���

v

LIST OF FIGURES

��� Object and use case views overlaying the same design� � � � � � � � � � ��

�� Adding a �fth use case with roles for four objects� � � � � � � � � � � � ��

��� Composing roles from di�erent collaborations to form objects� � � � � ��

��� C�� template implementation of hypothetical b role� � � � � � � � � ��

��� Template instantiations in class de�nitions to create CClass� � � � � � ��

��� Template instantiations	 including additional FiveBRole	 to create new

version of CClass� ��

�� The container recycling machine� �

� Use case requirements for the initial container recycling machine � � �

�� Block diagram of objects in the recycling machine design� � � � � � � � �

�� Use cases for two changes to the container recycling machine� � � � � � �

�� The container recycling machine with additions for container validation

and jam alarm� �

�� Two extension use cases re�ned and restated based on the original design� �

��� Diagram of interactions between objects for the Adding Item use case� ��

�� Conceptual view showing relationships among objects �vertical rect�

angles�	 collaborations �horizontal ovals�	 and roles �intersections�� � � ��

��� A graphical representation of overlap �a� and its removal as a separate

collaboration �b�� ��

��� A decomposition to separate the common concerns of a linked list data

structure into generally �and repeatedly� useful components� � � � � � ��

vi

��� Partial implementation of the DepositReceiver role in the Adding Item

collaboration� ��

�� Partial implementation of the DepositReceiver role in the Print Receipt

collaboration� ��

��� Template instantiation of the Print Receipt role in the DepositReceiver

object
s class� ��

��� Template instantiation of the Print Receipt role in the DepositReceiver

object
s class� ��

��� Template instantiation for the one role ReceiptPrint class� � � � � � � �

��� Corresponding but not equivalent uses of typedef and class de�nition� ��

��� Code for callback collaboration to register and call an object
s resize

method as a callback� ��

��� A single role component called BigRole� � � � � � � � � � � � � � � � � � ��

�� BigRole decomposed and implemented by two separate components� � ��

��� Two alternative compositions using either the BigRole component or

its two smaller part components� ��

��� The implementation of separate Ignition and Interlock components and

a lifter to add the interlock feature to the Ignition interface� � � � � � �

��� The implementation of a neutral sensor and two lifters to coordinate

it with the Interlock feature of Fig� ���� � � � � � � � � � � � � � � � � � ��

��� The implementation of a clutch sensor and two lifters to coordinate it

with the Interlock feature of Fig� ���� interface� � � � � � � � � � � � � ��

��� Two components for a simple linked list implementation� � � � � � � � ��

��� Class declarations for client that uses the LinkedList� � � � � � � � � � ��

��� Two templates for a simple tree data structure� � � � � � � � � � � � � ��

���� Lifter for merging tree semantics with list interface� � � � � � � � � � � ��

vii

���� Class declarations for a merged Tree and LinkedList� � � � � � � � � � ��

��� Linked list node implementation� ��

���� Class declarations for a node in two separate linked lists� � � � � � � � ��

���� A template component to translate calls to fun�� into calls to foo��� � �

���� Adding a type pre�x to direct a the fun�� method call speci�cally to

or around another component� ��

���� Composition of Pre�xFun in the Stooges class to direct the fun�� call

around Mo� ��

���� Illegal composition with Pre�xFun trying to direct the fun�� call down�

ward from Curly to Larry� ��

���� Proxy component for the ResizeAnnouncer component de�ned in Fig� ���� ��

���� ResizeAnnouncer proxy component with the handle management im�

plemented in a separate component� ��

��� Template with parameterized conditional code to control before	 after

or no propagation of resize event� �

��� Template for an initializer component to initialize two handle compon�

ents� ��

��� Overview diagram showing the role composition of each object with

annotations showing relationships between roles de�ned for each col�

laboration� ��

�� Initial use case requirements for the container recycling machine � � � ��

��� Block diagrams od initial object decomposition of Adding Item use

case �a�	 and Print Receipt use case �b�� � � � � � � � � � � � � � � � � ���

��� Block diagrams of objects in �a� Adding Item and �b� Print Receipt

use cases after re�nement to coordinate decompositions between use

cases	 and �c� objects in separate Linked List collaboration� � � � � � � ���

viii

��� Restatement of the use cases of Fig� ��	 re�ned for the object decom�

positions shown in Figs� ����a� and �b�� � � � � � � � � � � � � � � � � � ���

��� Interaction diagram for Adding Item collaboration� � � � � � � � � � � ���

��� Interaction diagram for Print Receipt collaboration� � � � � � � � � � � ���

��� Restatement of the use cases of Fig� ��	 re�ned with the responsibilities

shown in Figs� ��� and ���� ���

��� Roles�responsibilities matrix for part of the recycling machine design� ���

���� Two alternative strategies to address the overlap between the Custo�

merTotal and InsertedItem roles� ���

���� Annotated column for the ReceiptBasis object� � � � � � � � � � � � � � ���

��� Two alternative approaches to addressing name di�erences between the

CustomerTotal and InsertedItem role components� � � � � � � � � � � � ��

���� �a� The initial con�guration of the DepositReceiver object with roles

from the original collaborations� �b� The DepositReceiver object after

the addition of proxy components� ��

���� The completed form of the DepositReceiver object with three proxies

for the inter�object calls between roles	 two handles to connect the

proxies to other objects	 and a constructor to initialize the two handles� ��

���� Overview diagram showing the complete role composition of each ob�

ject and the relationships as implemented with the addition of proxy	

handle	 and translate components� ��

���� The main subroutine for the Container Recycling Machine application� ���

��� The Validate Item use case� ���

�� Initial role decomposition of the Validate Item use case� � � � � � � � � ���

��� Roles in the Validate Item use case arranged to �t objects of existing

application� ���

ix

��� The re�ned Validate Item use case� ���

��� Interaction diagram for two alternative sequences of the Validate Item

collaboration� Looped arrows indicate intra�object calls to or from

another collaboration� ���

��� Roles�responsibilities matrix for the recycling machine with the Valid�

ate Item collaboration added� ���

��� The original form of the CustomerPanel object before inserting roles

for the Validate Item use case� ���

��� The complete composition of the CustomerPanel object after adding

three new components for the Validate Item collaboration� � � � � � � ���

��� The Item Stuck use case	 as re�ned� ���

���� Roles�responsibilities matrix the recycling machine with the Item Stuck

collaboration added� ���

���� Overview diagram of the complete application with both the Validate

Item and Item Stuck changes added� � � � � � � � � � � � � � � � � � � ���

��� Overview of one con�guration ���

x

ACKNOWLEDGMENTS

I would like to thank the many people without whom this thesis would

never have been written� Professor David Notkin provided patient support and

encouragement� My wife	 Luz Angela	 and son	 Marco	 provided continuous

motivation� My sister and brother�in�law	 Anke and Terry Gray	 provided

support especially in the most di�cult times	 and my parents	 Ruth and Lucas

VanHilst	 provided encouragement and �nancial assistance�

Many other friends and colleagues provided important assistance� The

members of my committee provided guidance in expressing my ideas� My fel�

low students Kingsum Chow	 Erica Lan	 and Gail Murphy provided support

and advice along with many others whom I hope will forgive me for not list�

ing all their names� My friends	 Greg Madejski	 Edwin Lee	 Don Wong	 and

again many others helped keep me sane� Researchers at other institutions	 in�

cluding Harold Ossher	 Don Batory	 Dirk Riehle	 and Thomas Kuehne	 played

important roles in helping me form my ideas�

I hope those who I have forgotten to mention in my rush to �nish the

writing will forgive me� While many have helped make this document more

than it would otherwise have been	 the errors and weaknesses in this document

are my own responsibility�

xi

Chapter �

INTRODUCTION

Writing good software is hard	 requiring domain expertise and skill in design�

Writing good software that is also adaptable is even harder� Not only does the

software have to meet the present requirements	 but it must also isolate the types of

decisions that could change to meet future requirements�

Object oriented approaches map entities from the problem space to objects in the

solution� But entities are the most stable part of a problem� it is the behaviors that

are most likely to change� Popular methodologies for object oriented development

lack both the models and the mechanisms needed to map behaviors from the problem

domain to changeable components in the implementation� New design methodologies

emerging in Europe map behavioral requirements to the initial stages of design	 but

not to implementation�

In this thesis	 we present a way of developing object oriented software that sep�

arates the concern of designing for future change from the concern of designing for

present requirements� Our approach combines a method of implementation that isol�

ates decisions in �ne grained components with a method of design that maps those

components from	 and to	 requirements� The methodology touches on a broad range

of issues a�ecting change	 including initial design	 reuse	 con�gurability and adapta�

tion	 the handling of anticipated and unanticipated change	 requirements traceability	

and design consistency�

��� Supporting Change

Requirements change� As Brooks observed �the software product is embedded in a cul�

tural matrix of applications	 users	 laws	 and machine vehicles� These all change con�

tinually	 and their changes inexorably force change upon the software product� �����

In this thesis we describe an approach to software development that supports the

process of changing the software product when requirements change� Ours is not the

�rst approach	 nor will it be the last	 to make this claim� What does it mean to

support change� We begin by presenting a list of properties that are important for

supporting change�

�� Flexibility addresses the amount of new code needed to add or alter a feature�

Ideally	 the cost of making a particular change should be proportional to the

cost of making that change in the analysis model of the design�small changes

should require correspondingly small amounts of new code�

� Modularity addresses the extent to which concerns are isolated so that chan�

ging one concern does not require changes to	 or even an understanding of	

the implementation of others� Ideally	 the concerns of a change will have their

own module or modules	 and no other modules will be a�ected� While �ex�

ibility helps the maintenance programmer say	 �yes	 I can add that feature	�

modularity helps her say	 �and yes	 everything else will still work as it should��

�� Durability implies the ability to apply change in a way that does not degrade

the ability to make further change� Durability addresses the increasing entropy

observed by Lehman and Belady�as programs evolve	 successive changes be�

comes harder to apply ����� The ideal	 zero entropy result of applying a change

would be a system that was indistinguishable from the system that would have

resulted had the new requirements been included in the original requirements�

�

�� Wholeness implies support for change across all phases and artifacts of software

development� An approach that addresses change only in the implementation

lacks wholeness� The same can also be said of an approach that focuses on

design change	 with little guidance for changing the implementation� Support

should cover propagating changes from the requirements through the design and

into implementation	 and be re�ected in the artifacts of each� Two stronger

properties also apply to wholeness�

�a� Proportionality suggests that the e�ort needed to change the implementa�

tion should be proportional to the scope of change in the design�

�b� Traceability suggests the existence and maintenance of mappings between

artifacts of successive development phases�

�� Clarity refers to the e�ort needed to �gure out how to make a change	 includ�

ing the adjustments needed to counteract any impact on other concerns� If a

program is too complicated for the maintenance programmer to understand	 it

may be cheaper	 and safer	 to build a new application than to �gure out how

to change the existing one�

�� Breadth refers to the range of changes that are supported� Using a particular

approach may make some changes easier� But other changes may be just as

hard or even harder when compared with other approaches�

�� Depth refers to the degree to which changes can be �nely tuned in important

ways� It may be easy to adapt a program to be close to what the customer wants	

but di�cult to get exactly what she wants� A component kit	 for example	 may

make it easy to add dial interactors to an application	 but hard to label those

dials for a user
s logarithmic data��

�While scalability refers to an ability to apply something for small or large scale uses� depth
emphasizes usage for both small and large scales� at the same time�

�

�� Balance considers the net cost of supporting change� Ideally	 there should be

no other cost�ceteris paribus� But �exibility often comes at the cost of other

desirable qualities	 such as development e�ort and runtime performance�

��� Change in Software Evolution

In software evolution change is driven by user requirements� Such requirements typ�

ically involve system level behaviors that a user can observe or initiate� In a require�

ments analysis	 these behavioral requirements are described in use cases�sequences

of behavior described from the users point of view�� In this thesis	 the changes we

address are changes presented as use case requirements� More signi�cantly	 they are

more likely to involve system behavior than the format of data�

Changes during software evolution are often small	 but rarely trivial� Use cases

commonly describe sequences of behavior that involve the participation of several

entities in the problem domain� The behavior originates in one entity	 typically some

part of the user interface	 is processed by other entities as they change or interact

with system state	 and produces results that present themselves through actuating

devices or state changes in other parts of the user interface�

Support for software evolution must allow changes to interact with existing state

without having to resemble existing behavior� Users often request new kinds of beha�

vior to be added to existing systems� These new behaviors manipulate existing data

and introduce new data� Changing the details of an existing behavior is not su�cient�

Changes in software evolution are often hard to predict� Users unfamiliar with a

new technology describe their requirements based on the systems they know� After

gaining experience with a new system they are likely to discover possibilities that

would not have occurred to them earlier� Changes in the environment may also

be hard to predict	 including regulatory changes	 changes due to competition	 and

�A more extensive discussion of use cases� with examples� is provided in Chapter ��

�

changes discovered when a product enters new markets� Even for changes that could

be predicted	 developers aren
t perfect� To paraphrase Dave Thomas	 who would have

expected the year ����

In this thesis	 we focus only on changes that can be applied at compile time or

earlier� There are domains where change must be applied to running systems� But in

many domains	 changes can be applied by replacing the executable image� Microsoft

Word	 for example	 doesn
t have to change from Version � to Version � as it is running�

Applications shouldn
t have to pay the price of runtime support for changes that can

easily be rerun through the compiler	 especially if the penalty is reduced �exibility�

Finally	 we see no compelling reason to prevent programmers from seeing the im�

plementations of modules� Software evolution is largely an activity carried out within

the walls of the proprietor of the software� In this context	 the protection of trade

secrets is not an issue� Programmers struggling to satisfy current and future custom�

ers can and should have access to the code of any module they are trying to reuse�

Similarly	 in the argument between black box and white box implementations	 while

change should be addressed in a systematic way	 we strongly believe that providing

better paths to success is preferable to adding obstacles�

We focused our research on software evolution in object oriented approaches be�

cause that is where we can �nd our largest audience� Although problematic	 we believe

that models based on entities and abstract data types provide a better foundation for

robust design than earlier functional models� Object oriented technology has demon�

strated enough advantages over competing technologies to have earned a following in

the software development community and among those interested in change� We feel

that this thesis makes a contribution in an area where current practice can still be

improved�

�

��� Object Oriented Development

The idea that today
s object oriented approaches solve the problems of software evol�

ution is a myth� Object oriented development has been over sold as a solution to

software change� Proponents point to the robustness of designs based on entities and

the changes supported by encapsulation and inheritance� But the examples of change

they point to are always data type changes	 with little or no change in behavior�

Current approaches to object oriented design assume that changes can be isol�

ated in separate objects� The argument goes something like this� With support for

changing data types	 an object can be replaced with another object of a related type

having the same interface	 but di�erent semantics� Given the right abstractions	 code

that draws rectangles can be made to draw circles� Code that stores data in linked

lists can be made to store the same data in hash tables� Each of these changes is made

by replacing a single object� The problem with this argument is that the changes it

assumes are few and localized� In software evolution	 systems undergo changes that

are more varied and less easily isolated� The types of behaviors found in use case

requirements criss�cross one another and span large parts of the system�

����� Design

In object oriented programming	 the basic unit of encapsulation is the object� Thus

it is not surprising that current design models address change	 assuming they address

it at all	 by attempting to encapsulate it within a single object� The more naive

approach assumes that changes will naturally happen only within entities where they

can be addressed by the mechanisms of encapsulation and inheritance provided by the

implementation� This design approach models entities in the problem domain with

little or no attention for the issue of change� �Instead of an indirect mapping from

problem domain to function�sub�function or problem domain �ows and bubbles	 the

mapping is direct	 from the problem domain to the model� ���	 p����

�

Unfortunately for the types of behavior changes discussed above	 neither part of

the naive assumption holds� Behaviors of interest to the user often do not fall within

a single entity of the problem domain� For those behaviors that can be contained	 the

mechanisms of implementation often break down	 as we explain below� The reality is

that many changes are not supported�

The less naive approach to object oriented design acknowledges that some changes

cannot be addressed by normal entity models� Special e�orts must be applied to

isolate these more di�cult changes� These approaches deviate from the entity model

to capture multi�entity change	 or add structures of non�entity objects to address

weaknesses of the implementation� Behavior and entity models are intermingled in

the design�some objects model entities while other objects model behavior�

Design approaches that mix entity objects with behavior objects complicate designs

and make them more di�cult to maintain over time� New behaviors may be added

as behavior objects	 but changes to existing concerns	 whether behaviors or entit�

ies	 become progressively more di�cult� Concerns become dispersed over both kinds

of objects� Mixed designs no longer re�ects the logic and structure of the problem

domain� The model is also hard to realize�in practice	 adding new behavior still re�

quires changing existing objects	 either at the time of change or beforehand	 to create

the points of attachment�

Some in the frameworks and patterns communities have argued that problems of

change can be resolved if only we �nd the right abstractions ��	 ���� There are two

problems with this argument� The �rst problem is that	 even if an abstraction can

be found for each requirement	 leaving the door open for any of a large number of

requirements to change	 including several at once	 requires more than a single abstrac�

tion for each change� Requirements overlap and commingle ����� The other problem

is that much of the e�ort in �nding abstractions must be directed at overcoming lim�

itations in the method of implementation� We describe some of those implementation

problems	 below� Thus	 even if the ideal of �nding an abstraction for every change

�

could be found	 it is still worth considering other approaches if the overall e�ort can

be reduced�

����� Implementation

The common mechanisms of encapsulation and inheritance have numerous limitations

and weaknesses� We brie�y list the problems here	 discussing them at greater length

in Chapter �� The consequences of changing an interface limits the kinds of changes

that can be supported	 particularly behavioral changes� The order in which changes

are applied is re�ected in the inheritance hierarchy and a�ects the ability to apply

future changes� A simple change to a single type can propagate as a chain reaction

through structures of inheritance and client relationships� Hierarchical structures

can
t support the combinatorial variations of features needed to tailor families of

products for varied customers� Common type systems only support changes at a

single level in the aggregation hierarchy�details of component objects cannot be

changed without causing the chain reaction mentioned above� In terms of our initial

set of criteria	 these problems a�ect breadth	 durability	 modularity	 and depth�

Interesting structures can be applied to improve abstraction in some places where

the existing mechanisms would otherwise break down� Solutions of this kind can be

documented for reuse as frameworks or patterns� This approach	 however	 is also

limited in the support it can provide� The changes must be anticipated since the

structures themselves are hard to add to an existing design� The supported change

must be isolated in a single object	 often with a �xed interface�

Some object oriented languages provide additional mechanisms to support change�

The weaknesses or advantages of these alternatives depends on the details of each

language
s implementation� We discuss the limitations of multiple inheritance and

interface types in Chapter �� Some additional discussion of Smalltalk	 ML	 and BETA

appears in Chapter ���

Ultimately	 the design for an object oriented program must be implemented�

�

Whatever design model of change we choose	 we will need mechanisms that sup�

port it	 and hopefully avoid some of the kinds of problems described above� The

approach we will take involves factoring objects into smaller fragments	 called roles�

We present an implementation based on template parameterization in Chapter ��

Alternative mechanismss that might also work are discussed in Chapter ���

��� A Role Oriented Approach

A new approach emerging in Europe	 called role modeling	 augments the basic object

model with the additional abstractions of roles and collaborations ���	 ��	 ���� This

new approach is capable of capturing both entities from the problem domain and use

case�like scenarios from the requirements analysis�

A collaboration is a group of objects that work together to address a particular

concern	 such as performing a task or maintaining an invariant� A role describes the

responsibilities of a particular object for its part in the collaboration� In Reenskaug
s

OORAM �Object Oriented Role Analysis and Modeling� methodology	 collaborations	

called role models	 are used in the design analysis	 to model the behaviors of use case�

like scenarios in an object structure �����

Figure ��� shows graphically how both the entity and use case views are overlayed

on the same structure� Objects model entities� Collaborations model behavior� Roles

capture the intersections� Not every object participates in every collaboration	 thus

not every intersection de�nes a role�

Roles provide an abstraction that allows an object
s participation in a use case

concern to be modeled without knowing the details of the rest of the object� In fact	

a role is not tied to a particular object� Any object that ful�lls the responsibilities of

a role can play that role in the collaboration�

Collaborations can be subdivided to manage complexity and exploit reuse� The

smaller collaborations address smaller concerns with fewer and�or smaller roles� Smal�

��

Object View

Use Case View

Collaboration
�

�
�

�
�

Role
�a

Role
�b

Role
�c

Collaboration

�
�

�
�

Role
a

Role
b

Role
c

Role
d

Collaboration
�

�
�

�
�

Role
�a

Role
�b

Role
�c

Collaboration
�

�
�

�
�

Role
�a

Role
�b

Object
A

Object
B

Object
C

Object
D

Object
E

Figure ���� Object and use case views overlaying the same design�

ler collaborations can also capture generally useful concerns such as maintaining the

relationships in tree or linked list data structures�

In the OORAM methodology	 roles exist as an abstraction only in the design

analysis� Roles abstractions are combined to de�ne all the responsibilities of an object

in a process called role synthesis� The designer then designs and implements classes

for each object�

��� Roles and Change

The role is a powerful abstraction for evolution� Ignore implementation	 for the

moment	 and consider evolution as applied only in the OORAM analysis model�

Figure �� shows the addition of a new use case to part of the model from Fig� ����

Collaboration � introduces three new roles for the existing entities A	 C	 and D	 and

��

Object View

Use Case View

Collaboration
�

�
�

�
�

Role
�a

Role
�b

Role
�c

Collaboration

�
�

�
�

Role
a

Role
b

Role
c

Collaboration
�

�
�

�
�

Role
�a

Role
�c

Collaboration
�

�
�

�
�

Role
�a

Collaboration
�

Role
�a

Role
�b

Role
�c

Role
�d

�
�

�
�

Object
A

Object
C

Object
D

Object
F

Figure ��� Adding a �fth use case with roles for four objects�

one role for a new object	 F�

In the analysis model of Fig� ��	 Collaboration � is treated like any other collabor�

ation�as if the design has always had these �ve collaborations� Each of the objects

must still play the same roles as before	 for collaborations � through �� But some

must also play a new role in collaboration �� In this model of evolution	 roles de�ne

both increments of change and units of continuity�

Unfortunately	 implementation can
t be ignored forever� The role approach to

evolution	 so compelling in the design analysis model	 is poorly supported in imple�

mentation� In OORAM	 synthesis is applied to each of the a�ected objects	 and a

new implementation is created� The entire process from the synthesis step on	 is

repeated� The designer can refer back to the original implementations for ideas	 but

�

there is no actual method for reuse� Because these changes are applied with the

normal approaches to implementation	 as mentioned earlier	 it is di�cult to apply

the changes as simple extensions to existing code and no protection from the e�ects

rippling through class and aggregation structures�

��� Our Approach

In this thesis	 we extend the role abstraction into implementation� The increments

of change and units of continuity	 modeled by roles	 become actual source code com�

ponents� We thus defer the synthesis step	 mentioned above	 through the remainder

of the design process	 to be performed at compile time� An abbreviated description

of our approach appears elsewhere �����

In our approach	 we take a compositional view� Object implementations are cre�

ated by composing them from smaller components	 as shown in Fig� ���� Abstractly	

each component handles the responsibilities of a role in a collaboration� Thus in

a broader sense	 we create applications by composing collaborations� Evolution is

applied by adding and replacing sets of components de�ned by collaborations�

Our approach addresses the issues needed to make roles both implementable and

composable� As an example	 use cases often overlap�they operate on common state

and duplicate pieces of each other
s behavior� In OORAM such issues are left to the

object implementor to �gure out in the synthesis step� Chapter � of this thesis de�nes

a development process with steps that address these issues explicitly�

In composing collaborations	 the touch points occur within objects rather than

between objects� Some of the steps in our process	 described in Chapter �	 subdivide

roles to separate the concern of addressing the responsibilities in a collaboration from

the details that address intra�object composition and sharing� In Chapter � we de�

scribe a variety of simple idioms to handle issues involved in composition� Separating

collaboration concerns from the more context dependent composition concerns frees

��

�
���

�� �
���

��

�
���

��
��

��
��
���

�
���

�� �
���

��

�
���

�� �
���

��

�
���

��
��

��
��

��
��

��
��

�
�
�
�
���

�
���

�� �
���

��

�
���

�� �
���

���

��
��

��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
���

�� �
���

�� �
���

��

�
���

�� �
���

��

�
���

�� �
���

���

��
��

��

��
��

��
���

�
�
�
�
���

Figure ���� Composing roles from di�erent collaborations to form objects�

��

the components that address collaboration concerns to be reused in di�erent compos�

itions without modi�cation�

Our handling of interactions and interfaces between objects di�ers from other

object oriented approaches� In our approach	 interactions between objects are de�ned

within collaborations� Role components handle the parts of an object
s interface

speci�c to each collaboration� An object can participate in a collaboration	 not just

by being able to play its role	 but	 more concretely	 by having the appropriate role

component in its composition�

The compositional approach to implementation allows us to better address soft�

ware evolution� Just as collaborations can be subdivided to reduce complexity	 we

subdivide collaborations and roles to better isolate concerns that might change in an

application
s evolution from concerns that don
t ����� In Chapter �	 we describe the

process of adding use cases to change or augment the behavior of an existing applic�

ation� Some of the compositional issues are revisited	 but	 largely	 it is a process of

adding new components to existing compositions�

��� An Implementation

Role composition is analogous to inheritance� Adding a role component to an existing

object extends the existing interface	 but does not replace it� Within an object	

components of the composition interact through internal interfaces	 not necessarily

visible to an object
s clients� The normal inheritance semantics of object oriented

programming provide especially good support for our style of composition because

the interaction with other components does not require separate references for each

component�their methods and attributes are all accessible in the inherited interface�

The extensive use of subdividing in our design approach would come at a heavy

price if the implementation exacted an overhead for connecting each component or the

resulting type system became unmanageable� Fortunately	 we have found a method of

��

template �class TwoCType� class TwoDType� class SuperType�

class TwoBRole � public SuperType �

TwoCType� c�object�

public�

void init	TwoCType� c
 � c�object � c� �

void doSomething	TwoDType� d
 �

d�doThis	
�

c�object�doThat	d
�

�

��

Figure ���� C�� template implementation of hypothetical b role�

implementation that	 in most cases	 exacts no overhead for connections within objects	

and computes the type system at compile time each time the system is compiled�

Each role component is implemented as a class template in C��� The name of

the parent super class is parameterized	 as are the classes of the other objects in

its collaboration� Fig� ��� shows an implementation of the hypothetical b role in

Figs� ��� and ���

Components are composed by binding concrete class names to the template para�

meters in template instantiations� Figure ��� shows a series of statements to create

the implementation of object C in Fig� ���	 while Fig� ��� shows the corresponding

statements for object C as de�ned in Fig� ��� Note	 in the second de�nition of the

CClass	 that the new role component does not have to be added in the most derived

position�

When templates are composed	 as in the above example	 methods are statically

bound to their calling site� By using static binding instead of dynamic binding	 the

methods can be inlined	 saving not only the dispatch indirection	 but the function

call overhead as well� In this way	 there is no runtime cost for breaking operations

into smaller pieces and later composing them through inheritance�

A common use for dynamic binding	 allowing methods to be overridden in more

��

�� forward declarations for classes not yet defined

class DClass�

class EClass�

�� definition of CClass with OneBRole in base position

class CClass� � OneBRole �emptyClass� ���

class CClass� � TwoBRole �DClass�EClass�CClass�� ���

class CClass � ThreeCRole �CClass�� ���

Figure ���� Template instantiations in class de�nitions to create CClass�

�� forward declarations for classes not yet defined

class DClass�

class EClass�

�� definition of CClass with FiveBRole inserted in �nd position

class CClass� � OneBRole �emptyClass� ���

class CClass� � FiveBRole �CClass�� ���

class CClass� � TwoBRole �DClass�EClass�CClass�� ���

class CClass � ThreeCRole �CClass�� ���

Figure ���� Template instantiations	 including additional FiveBRole	 to create new
version of CClass�

��

derived specializations	 is not needed for our approach� The same a�ect is achieved

by inserting the specializing role in a less derived position	 as demonstrated by the

FiveBRole in Fig� ���� Chapter � discusses the use of composition ordering in more

detail� A comparison of this approach with more traditional framework implementa�

tions appears elsewhere �����

Because all classes are parameterized	 implementations are not dependent on the

existing type structure� The limitations of extension and the problem of propagating

changes	 described above	 don
t apply� The type structure is computed by the com�

piler when it instantiates the classes� The implementation is still fully type checked

at compile time�

We present the C�� template approach to implementation for the purpose of

demonstrating that our approach to development and evolution is realizable� Other

mechanisms for implementing roles may also exist� We discuss a number of alternat�

ives that may work	 and a few that don
t	 in Chapter ��� A set of criteria for viable

implementations appears in the appendix�

��	 Our Contribution

In this thesis we take a promising approach for describing change in the analysis

phase of design and extend it all the way into implementation� We present an e�cient

method of implementation for this approach� We provide a detailed description of the

development process	 and of the process of applying change� Finally	 we present a set

of implementation idioms that facilitate our style of implementation� In Chapter �	 we

describe our experience in using our approach to develop a medium sized application�

Chapter �� relates our approach to supporting change back to the criteria described

above�

Many pieces of the material presented here are not original� The concept of a

role originates with Reenskaug	 et al� ����� The use of parameterized inheritance

��

was described by Bracha and Cook ���� and has been used with C�� templates	

for example	 in the implementation of the IBM Montana compiler�� Some of the

idioms presented in Chapter � have appeared in other contexts ��	 ���� However	 by

combining these ideas in a comprehensive way	 we open up opportunities that have

long existed but never fully been exploited�

There are no published reports of other attempts to implement roles from the

analysis as source code components	 let alone to compose them as anything other

than abstractions� Some of the idioms are original�most notably our novel approach

to applying data structures� Parameterized inheritance has never been exploited for

more than isolated classes in an application� Three of the �ve diagrams we introduce

to aid in program analysis and understanding are new� Finally	 our contribution is

unique in presenting a complete process for supporting change in software evolution

using a common implementation language in a non�domain dependent way�

Many books on software development claim that their approach makes changes

easier to apply� Far fewer actually explain how to apply change	 and none in a

systematic approach that covers software evolution� How much and which parts of

the original development e�ort must be repeated when a requirement changes� Is the

original approach reused at all	 or does change require a di�erent approach� To what

extent are details missing and left up to the individual developer� In this thesis we

describe an approach to supporting change that address each of these questions�

�Private conversation with the developers�

Chapter �

A USE CASE EXAMPLE

In this chapter	 we present an example application to provide focus and to motivate

discussion throughout the remainder of the thesis� The example illustrates use case

requirements	 an object oriented design to address those requirements	 and subsequent

changes that a user might request� The application is a container recycling machine�

a vending machine that takes empty beverage containers and issues a receipt for their

deposit value�

��� Use Cases

Use cases are more dynamic than architecture� I can easily add use cases

without changing the architecture� We do it all the time� in fact	 that
s

the most frequent mechanism of system extension��

In software evolution	 programs change to satisfy new requirements� It is now

commonly accepted that user level requirements can be modeled with use case scen�

arios ����� A use case is a description of an observable sequence of behavior from the

user
s perspective� When re�ned	 a use case describes a �ow of control and informa�

tion among	 and changes of state within	 entities in the problem domain�

Changes often extend or replace part of the behavior in an original use case�

Rather than edit the original use case	 such changes are modeled as extension use

cases	 and stated in terms speci�c to the earlier use case� �What extension actually

�James Coplien� posting to the patterns�discussion mailing list under the subject title� �Re� RE�A
Very Disturbing Talk�� �� Nov �		
� Quoted with the author�s permission�

�

means is that behavior b� will be inserted into another behavior b� We want �the

description of� behavior b to be completely independent and have no knowledge of

behavior b�� ��	 p����

The initial requirements for an application are described by a set of use cases�

When changes are requested	 they will also be described by use cases	 or extension

use cases� Thus	 support for software evolution should be discussed in terms of the

addition or replacement of use cases�

��� The Container Recycling Machine

To motivate the discussion here	 and in later chapters	 we present a concrete example

adapted from the book	 Object Oriented Software Engineering	 by Jacobson	 et al� ����

The example is the design of the container recycling machine�a vending machine

that takes empty beverage containers and issues a receipt for the deposit value of the

containers� The front of the machine has three slots �one each for cans	 bottles	 and

cartons�	 a button to request a receipt	 and a slot to issue a receipt� An illustration

of what the machine might look like is shown in Fig� ���

The requirements for the container recycling machine are described by two use

cases	 called Adding Item and Print Receipt� The Adding Item use case describes

the machine
s response to a customer inserting an empty beverage container� The

Print Receipt use case describes the system
s response to the customer requesting a

receipt� The two use cases are printed in Fig� �� In our example	 we will build the

system for these two use cases and then	 after the system has been built	 apply two

changes� The �rst change is described by the Validate Item extension use case� The

second change is described by an extension use case called Item Stuck� The changes

are applied	 not at the same time	 but one after the other to better illustrate issues

of software evolution over time�

In an object oriented design of the container recycling machine	 the objects model

�

	
	
	
	
	
	
	
	
	

���
���

���
��

Deposit Refund

jtreceipt

carton

can

�

bottle

�

�

Figure ��� The container recycling machine�

When a customer inserts a can	 bottle	 or carton into the appropriate slot	
the system collects and crushes the container	 and then increments both
a customer total and a daily total for that container type�

�a� Adding Item

When the customer presses the receipt button	 the following information
for each container type is printed on a receipt� name	 number deposited	
unit deposit value	 and total deposit value� Then the sum of the deposit
values is printed	 and the receipt is issued through the slot� Finally	 the
customer totals are cleared	 and the machine is ready for a new customer�

�b� Print Receipt

Figure �� Use case requirements for the initial container recycling machine

entities in the problem domain� In the design for the container recycling machine	

the two use cases described above are supported by the following object types� Cus�

tomerPanel	 DepositReceiver	 DepositItem	 ReceiptBasis	 InsertedItem	 and Receipt�

Printer� Figure �� shows a diagram of the object structure� The arrows indicate

communication associations� The container recycling machine has one object each

for the CustomerPanel	 DepositReceiver	 ReceiptBasis	 and ReceiptPrinter� There

are separate DepositItem and InsertedItem objects for each of the three container

types�can	 bottle	 and carton�

Each of the objects in the design abstracts an entity in the problem description�

The CustomerPanel encapsulates the devices in the front panel� DepositItem is the

abstract entity for each item type� It provides information about items of its type	

such as name and deposit value	 and maintains a daily total� ReceiptBasis represents

a customer session� It is responsible for keeping the list of customer totals by item

type and assembling the contents of the customer receipt� To ful�ll its responsibilities	

�

CustomerPanel

�

DepositReceiver

�

DepositItem

ReceiptPrinter

�
�

��

ReceiptBasis

A
A
AAU

InsertedItem

�
A
A
AAK

Figure ��� Block diagram of objects in the recycling machine design�

the ReceiptBasis maintains a list of InsertedItem objects� Each InsertedItem keeps

the customer
s total for a speci�c container type and has a reference to that type
s

DepositItem object� The DepositReceiver represents the overall machine and is the

main control object for the system
s interactions� It maintains the list of DepositItems

for each type of container that may be deposited and coordinates both of the main

use case activities� The ReceiptPrinter encapsulates the interface to the printer for

printing receipts�

��� Changes to the Container Recycling Machine

For our example of software evolution we present two changes that users might request

based on their experiences with the existing product� The �rst change requested is to

validate containers to help stores near the border cope with non�deposit containers

from the neighboring state� The second change requested is to check for a stuck

container as an in�ux of unwashed containers can make things get sticky� The two

corresponding use cases	 called Validate Item and Item Stuck	 are listed in Fig� ���

In our example	 the second change	 Item Stuck	 is requested after the �rst change	

Validate Item	 has already been applied� Figure �� illustrates what the machine

might look after the two changes have been applied�

The ideal result of applying change is a system with the changes included that is

indistinguishable from the system that would have resulted if the new requirements

�

When a container is inserted	 the system measures its dimensions and
reads its bar code� The measurements and bar code are used to determine
if the container should be accepted for a deposit refund� If it is not accep�
ted	 no totals are incremented	 and the NOT VALID sign is highlighted�
The user must then remove the container before inserting another� If the
container is valid	 the system collects the container and continues as per
the Adding Item use case�

�a� Validate Item

After attempting to collect the container but before incrementing any
counts	 the machine checks to see if the item has become stuck� If the
item is not stuck	 the machine continues as before� If the item is stuck	
the machine sounds an alarm� No totals are incremented� The machine
then waits for an operator to clear the jam	 after which it resumes as
before�

�b� Item Stuck

Figure ��� Use cases for two changes to the container recycling machine�

�

	
	
	
	
	
	
	
	
	

���
���

���
��

Deposit Refund

�� ��not valid

	

��
�� ��jam

jtreceipt

carton

can

�

bottle

�

�

Figure ��� The container recycling machine with additions for container validation
and jam alarm�

�

had been part of the original analysis� Thus it is worth describing how the new

requirements would be handled if they were included in the original design� Figure ��

lists the re�ned form of the Validate Item and Item Stuck use cases stated in terms

of the objects in Fig� ��� The re�ned use cases assume that their behavior can be

integrated together with that of the original use cases within the same objects�

The challenge in the next several chapters will be to apply the Validate Item and

Item Stuck changes	 one after the other� In many cases it may be su�cient to discuss

only one change	 applying the Stuck Item requirement	 in order to highlight the issue

in question�

�

When a customer inserts an empty can	 bottle	 or carton	 the Customer�
Panel measures the container and reads its bar code� The CustomerPanel
passes the measurements and bar code	 along with the slot type	 to the
DepositReceiver� The DepositReceiver identi�es the corresponding De�
positItem and asks it if the dimensions and bar code are valid� If the
DepositItem responds that the container is valid	 the DepositReceiver sig�
nals the CustomerPanel to collect the container and then continues to
increment the counts as in the Adding Item use case� If the DepositItem
responds that the dimensions are not valid	 the DepositReceiver signals
the CustomerPanel and takes no further action� The CustomerPanel then
lights the NOT VALID sign and waits for the customer to remove the
container� When the customer removes the container	 the CustomerPanel
turns o� the NOT VALID sign and is ready for the next event�

�a� Validate Item

After signaling the CustomerPanel to collect the container but before in�
crementing any counts	 the DepositReceiver asks the CustomerPanel if
the item has become stuck� If the item is not stuck	 the DepositReceiver
continues incrementing the counts	 as before� If the item is stuck	 the
DepositReceiver signals the CustomerPanel to sound an alarm� No totals
are incremented� The CustomerPanel then waits for an operator to clear
the jam	 after which it resumes as before	 ready for the next event�

�b� Item Stuck

Figure ��� Two extension use cases re�ned and restated based on the original design�

Chapter �

PROBLEMS OF CHANGE IN OBJECT ORIENTED

PROGRAMMING

Object oriented programming is promoted for its ability to support change� Al�

most every book on object oriented development describes the importance of change

in the introduction� For example	 Meyer writes that	 �one of the key bene�ts of

the techniques studied in this book will be to make software easier to modify����	

p���� Cox tells us that the key features of object oriented programming address the

problem of �making software malleable enough to avoid destruction by changing re�

quirements� ��	 p�v��

Oddly enough	 while change is given so much attention in the introduction	 few

books have an entry for change in the index� If change appears at all	 it is typically

only a brief mention of changing a data type� In Meyer
s book	 the one mention of

change is immediately followed by a discussion of changing polygons to rectangles ���	

p����� In Cox	 the sole mention appears in the line	 �The system as a whole is

changing as new data types get implemented and put at the user
s disposal� ��	

p���� The reference is to a container that holds pens as well as pencils�

Changing data types is important� Word processors manipulate text with di�erent

fonts	 and banks are constantly creating new types of accounts� But data type change

is neither the only kind of change	 nor	 in the case of software evolution	 even the

dominant kind of change�

In software evolution	 programs change to satisfy a user
s new requirements� Often

these requirements involve new or changed behavior� Meyer cited a ���� study by

�

Leintz and Swanson� �More than two �fths of maintenance activities	 according to

this study	 are extensions and modi�cations requested by the users����	 p���� By

comparison	 less than one �fth of the changes involved changes in data format� �In

descending order	 the other change activities were emergency �xes	 routine debugging	

hardware changes	 and e�ciency improvements�� Yet	 Meyer focused discussion on

the cost of the data format change when the post o�ce changed to ��� zip codes�

In this chapter we describe problems of adding or changing behaviors in object ori�

ented programs� The discussion considers design models used in popular approaches

to object oriented development and also the common mechanisms used in object ori�

ented implementation� The purpose of this chapter is the dispel the myth that current

object oriented approaches have solved the problem of change and convince the reader

that a signi�cant problem still exists� Additional discussion of speci�c languages and

speci�c design approaches can be found in the chapter on related work� The prob�

lems described in this chapter are illustrated by the problem of applying the two

requirements use cases described in the previous chapter�

Experienced programmers may already have found ways around some or many of

the problems described below� But alternative solutions are not commonly found in

language manuals or taught in programming classes� In our own implementation of

roles we have had to address all of the problems described below� Our method of

implementation is described in Chapter ��

Before discussing the problems of object oriented programming	 we �rst describe

what it is� In object oriented programming	 objects are implemented as abstract

data types	 capturing both data and operations on that data� In a typical structure	

objects model entities from the problem domain�a word or paragraph in an editor

or an account or transaction in a bank program� The entities can be concrete	 such

as a �le in a �le system	 or abstract	 such as a scheduling policy in a multiprocessing

operating system ���� Objects interact with other objects by passing messages� A

message requests an object to perform one of its operations� Although similar to a

��

function call	 a message may invoke di�erent functions	 with di�erent semantics	 in

di�erent invocations	 depending on context speci�c to the receiving object�

��� Object Oriented Design

It is commonly accepted that designs should support change by localizing the parts

that change in separate components to isolate them from the rest of the application�

In object oriented programming this usually means isolating changes in objects	 since

objects are the components in the design� Object oriented design methodologies take

one of two views on isolating change in objects� One view is an implicit assumption

that changes will naturally occur within objects if one follows a good design practice�

The other view is that special measures should be taken to isolate expected change in

objects�possibly with additional structure to make it easier to replace or interchange

parts that would change�

����� Entities From the Problem Domain

For many approaches to object oriented design	 change does not appear as a separate

concern anywhere in the design process� Individual changes	 or even types of changes	

do not need to be anticipated� In this view object oriented design simply models

the entities in the problem space and the relationships among them� There is an

underlying assumption that the nature of object oriented design	 as such	 provides

a natural support for change� Objects in the design map to entities in the problem

domain� Object oriented designs are robust to change because the identities of entities

and the relationships between them do not change� Only the behaviors of individual

entities change�the kind of change supported by inheritance and encapsulation in

object oriented programming�

The focus on change within individual entities can be traced back to Parnas
 ���

paper	 �On the Criteria to be Used in Decomposing Systems into Modules� �����

��

The paper compared a design based on functional decomposition with one based on

essentially abstract data types�entities having public interfaces and hidden imple�

mentations� In its analysis of changeability	 the paper considered �ve changes�three

changes of a list
s storage format	 one change in a list
s physical storage location	 and

one change to the time when to compute the contents of a list� In each case	 only one

entity was a�ected� Noticeably missing from consideration was any change with an

externally observable behavior�

Use cases almost always involve observable behavior� As a rule	 they are expected

to involve more than one object�use cases are commonly modeled as interactions

among several objects� Thus if evolution includes adding or replacing a requirement

use case	 the assumption that change naturally involves the behavior of a single entity

cannot be considered valid�

Consider the Item Stuck change in the recycling machine example� To satisfy the

Item Stuck requirement	 the DepositReceiver
s behavior must change� After signaling

the CustomerPanel to collect the container	 it needs a new behavior to control whether

or not it continues� The CustomerPanel may have to change in order to suppress any

new deposit events until the stuck container has been cleared� Behaviors for detecting

the stuck container and sounding an alarm could also involve the CustomerPanel	

which already has other container feed operations and the NOT VALID warning� On

the other hand	 it might be time to refactor the design to create separate container

feed and alarm objects�

The entity modeling approach supports some simple changes	 but they must fall

within a single entity object and be made without changing the object
s interface� No

design features are provided to support changes that do not meet these two criteria�

changes common in program evolution�

�

����� Objects of Change

Jacobson and others propose deviating from the entity model in order to capture

changes in separate objects� Jacobson argues that since changes to functionality are

common	 in order to better isolate change some objects should be allowed to model

functionality� In OOSE	 such objects are called control objects�

We do not believe that the best �most stable� systems are built by only

using objects that correspond to real�life entities	 something that many

other object�oriented analysis and design techniques claim� When com�

paring a model developed with one of those techniques and an analysis

model using OOSE	 great similarities will be found between the entity

objects in the analysis model and the objects yielded in other methods� ���

However	 behavior that we place in control objects will	 in other methods	

be distributed over several other objects	 making it harder to change this

behavior���	 p�����

To add the Item Stuck use case to the container recycling machine	 Jacobson
s

design added a special control object called the Alarmist� The Alarmist was sup�

posed to completely encapsulate all the changes needed to add the behavior of de�

tecting stuck containers and sounding an alarm� But such a design could not be

implemented� �Unfortunately	 we cannot accomplish this with today
s programming

languages� ��	 p����� The Alarmist encapsulates most of the code needed for the

Item Stuck use case� But	 diverting control �ow to the new behavior required modi�

fying the DepositReceiver object�

Separate control objects	 like the Alarmist	 bring entropy to the system� In the

original recycling machine design	 the CustomerPanel encapsulates the system
s in�

terface to the feed mechanism� The Alarmist represents a second object in the design

that communicates with the feed apparatus� If we then want to change the feed

mechanism	 that change is no longer local� Although control objects are supposed to

��

reduce fragmentation in the handling of the current changes	 they add complexity to

the design and make it harder to avoid fragmentation in later changes�

Using separate objects to add the Validate Item use case adds even more com�

plication� Logically	 the validation criteria should be grouped	 with other information

speci�c to container type	 in the DepositItem objects� To isolate the Validate Item

change	 a duplicate data structure with DepositItem�like objects would be needed�

But the new structure defeats an important feature of the original DepositItem list�

the ability to add a new deposit item type by adding a single object to a list�

In summary	 designs based on the assumption that entities capture changes handle

a very limited range of possible change and are particularly vulnerable to requirements

changes of the type discussed here� Allowing objects that capture new behavior

supports a wider range of change	 initially	 but is more likely to degrade the quality

of support for all changes	 including data type changes	 over time�

��� Object Oriented Implementation

The mechanisms in object oriented programming most often cited for supporting

change are encapsulation and inheritance� With encapsulation	 an object
s clients

depend only on the abstraction of its interface�not its implementation� Parnas re�

ferred to the inability of clients to become dependent on details of implementation as

information hiding ����� Inheritance allows more speci�c functions to replace other

functions in the object
s interface� In this way	 an object
s implementation can be

changed without needing to change the syntax of its clients� The inheritance is further

supported by dynamic binding� When a client sends a message to an object
s inter�

face	 declared with only the base type	 dynamic binding directs the call at runtime to

the most speci�c function implementation for that message� Dynamic binding allows

the client to interact with di�erent implementations of the same object during a single

execution of the program�a property called polymorphism�

��

Encapsulation and inheritance support changes to data types� An object of a

particular data type can be replaced by a new object of di�erent data type� If the

two objects have the same interface	 it should not be necessary to change the imple�

mentations of any of the object
s clients�

To see how encapsulation and inheritance might be used for program evolution	

consider applying the Item Stuck use case as the only change to the original container

recycling machine� The original DepositReceiver object de�ned an addItem�� method

to increment the counts� For the Item Stuck use case	 we want to add an additional

step of checking for the stuck container before incrementing counts� We can de�ne a

new addItem�� method in a subclass of the original DepositReceiver class� The new

method performs the check and then calls the original method� When the Customer�

Panel object sends the addItem message to a DepositReceiver object of the new type	

dynamic binding invokes the newer addItem�� method�

����� Encapsulation and Inheritance

In the above example of subclassing the DepostReceiver object	 we implemented only

part of one change� Unfortunately	 things go downhill from there� When applied

to behavior change	 such as the two changes in the recycling machine example	 the

support for change provided by encapsulation and inheritance exhibits signi�cant

problems with interfaces	 chronology	 unzipping	 library blowup	 and aggregation�

In the example of adding the Item Stuck use case	 begun above	 the new addItem��

method needs to �nd out if the container feed mechanism has a stuck container� In the

original design	 the feed mechanism was encapsulated in the CustomerPanel object�

Introducing a separate object to check the feed status violates that encapsulation�

To preserve the encapsulation	 we would like to add the new checking operation to

the CustomerPanel object� But there is no method in the original CustomerPanel

interface that can be called to invoke that operation and get back an answer� If we

de�ne an isStuck�� method in the CustomerPanel	 the the DepositReceiver will need

��

to apply a potentially unsafe type cast to its existing CustomerPanel pointer in to

access it� If we introduce a new pointer with the correct type	 the previous code

could not access it� We would also have to change code elsewhere in the application

to initialize the new pointer�

We described adding the Item Stuck use case as if it were the only change� But

it is supposed to be the second change� This chronology of change reveals a problem

for applying several changes in succession� Assume we had applied the Validate Item

use case �rst and that the Validate Item use case de�ned its own addItem�� method

for the DepositReceiver object� The Validate Item version of addItem�� checks the

validity of the inserted item and then calls the original addItem�� method� In the

Validate Item change	 containers aren
t fed to the crusher until after they have been

validated� Thus the Item Stuck version of addItem�� should be invoked after the

Validate Item version	 and before the original� But as a subclass of the Validate

Item subclass	 there is no way to override just the original method� The Item Stuck

implementation of addItem�� will be called �rst� But it cannot then call the Validate

Item addItem�� method without having the original addItem�� method being called

right away	 as well� Had we implemented the Item Stuck change �rst	 and then the

Validate Item change	 the inheritance order would have matched the correct order of

execution�

The Validate Item change also produces the unzipping problem�a chain reaction

breakdown of modularity	 propagated from a single non�subclass change to an ob�

ject
s type� For the Validate Item change	 we would like to add some of the validation

criteria to the DepositItem objects� We can do this by subclassing the original De�

positItem class� However	 since the DepositItem objects are created by the original

DepositReceiver	 we are forced to change its implementation to create DepositItems

of the new subclass� But the change doesn
t stop there� The new DepositReceiver is

not a subclass of the original DepositReceiver	 so its clients must also be edited� The

clients are then also not subclasses of their original selves� �Propagating a change in

��

a low�level class can require rebuilding large amounts of code� ���� Keeping the same

name for both old and new classes after an edit	 to evade unzipping	 is undesirable

from a maintenance point of view�

A related modularity problem	 called library blowup	 occurs when we try to sup�

port multiple variants of a program with di�erent combinations of features� Suppose

we designed our recycling machine with base classes that measure and count con�

tainers and subclasses to print the receipt� If some stores want machines that give

change instead of printing a receipt	 we could replace the receipt printing subclasses

while reusing the original base� But suppose	 instead	 that for some states we need to

change the validation criteria to only measuring cans or only reading their bar codes�

Because of the hierarchical ordering	 we would have to copy and edit the receipt print�

ing subclasses for use with each of the validation base classes� To support alternative

validation choices	 receipt printing changes have to be applied in multiple places� It

is not di�cult to imagine combinations of many features� Batory noted that there

are more than ��� classes in the Booch library	 representing di�erent combinations of

less than �� features ����

Parnas discussed the hierarchical ordering of decisions in a paper on program

families ����� To avoid the problems associated with library blowup	 the di�erences

among members in a family of applications should be concentrated in the leaves

of inheritance hierarchies	 while those things that don
t change should be nearer the

root�� But choosing a good hierarchy is not always easy� Developers of window system

libraries assume that the window system is the least likely thing to change and build

their libraries accordingly� But for the developer of multi�platform applications	 the

window system might be the most likely thing to change	 while the arrangement of

popups	 sliders	 and menus is common to all versions�

The unzipping problem is also related to a problem of depth due to aggregation�

�Frameworks are based on the concept of providing stable foundations ���

��

Encapsulation and inheritance only support change at one level of aggregation� Com�

plicated objects should be hierarchically composed of smaller objects that address

more narrowly de�ned pieces of the problem� Details of the aggregation are part of

the outer object
s implementation that should then be hidden from its clients� But	 in

taking full responsibility for its component objects	 the outer object is made depend�

ent on the �nal types of its components� Subclasses cannot replace components of

the parent class�most languages allow methods	 but not attributes	 to be overridden�

Details contained within an object
s component objects cannot be changed without

changing the type of the outer object� We saw this problem when we tried to change

the class of the DepositItem
s managed by the DepositReceiver� The encapsulation

hides details immediately below the interface	 but not deeper�

����� Multiple Inheritance

Some languages address the library blowup problem with multiple inheritance� Mul�

tiple inheritance allows a subclass to have more than one superclass� For example	

the developers of the container recycling machine could use multiple inheritance to

support combinations of receipt printing versus change giving	 and measurement val�

idation versus bar code validation� They would implement a separate class for each

property	 and then inherit from di�erent combinations of two	 e�g� receipt printing

and bar code validation�

The usefulness of multiple inheritance is restricted by language speci�c limitations�

In C�� and Ei�el	 a multiply inherited class cannot call another of the multiply

inherited classes� Suppose the developers wanted to o�er a third receipt option that

used information from the validation option to print brand or size information on the

receipt� The new receipt class could not call the also multiply inherited validation

class to get that information�

CLOS and Dylan linearize multiple inheritance ��	 ��� One multiply inherited

class	 implemented as a mixin class	 can inherit from another multiply inherited class

��

without naming the other in its implementation� The multiple inheritance in CLOS

and Dylan	 however	 has limitations a�ecting design and reuse� If two inherited classes

have a function of the same name	 the language will merge the two functions� But

existing classes	 especially related classes	 may accidentally use the same name for

similar	 but distinct functions� There are also cases where it would be desirable to

inherit from the same class more than once� An example of this last situation occurs

where the class contains context speci�c state	 and you want an object that functions

with the same type in two di�erent contexts �e�g� as a node in two separate data

structures��

����� Interface Types

The unzipping problem was created by objects depending on the name of a class

for client objects ����� Interface types allow an object to communicate with another

object without naming its class� This can reduce some of the paths for the unzipping

chain reaction� But objects that copy or create other objects	 and classes that inherit

from other classes	 must still know the name of the other class� In addition	 interface

type names have dependency hierarchies of their own�

��� Patterns

Design patterns for dealing with change are presented in a popular book by Gamma	

et al� ���� A design pattern is a fragment of design that addresses a frequently en�

countered problem with an implementable solution� Several patterns	 most notably

the decorator and visitor patterns	 present ways to introduce objects with new im�

plementations at runtime without having to change the implementations of certain

clients� The decorator pattern allows a series of features and behaviors �decorations�

to be added to an existing object	 while the visitor pattern allows a new function to

be applied to an existing traversal �visits�� These patterns use the same mechanisms

��

of encapsulation and inheritance	 with the same limitations discussed earlier�

The decorator pattern might be applied to the problem of adding new steps in

succession to the DepositReceiver
s addItem method� Each of the method
s steps

would be implemented as a separate decorator object� The DepositReceiver object

and each of its decorator objects would be connected at runtime to implement the

addItem method
s steps in the appropriate order� New decorators can be added so

long as they keep the same interface� In this situation	 it is not unreasonable to

assume that the original developer could predict that the addItem behavior would be

augmented over the life of the application� It is less reasonable to assume that the

developer could design an interface that would be su�cient for all of the additions�

But decorators fall short of subclasses in other signi�cant ways� Like a subclass	 a

decorator can locally de�ne its own attributes and methods� But	 unlike a subclass	

those methods and attributes cannot be used by new clients or any other decorators�

Patterns often add structure in the original application in order to support future

changes	 at runtime	 to speci�c objects in the design� Such design patterns use the

model of isolating change in single objects	 discussed earlier� They also assume that

the changes can be anticipated	 since the support mechanisms must be part of the

original design�

Good designers are aware of the changes that can prompt refactorings�

Good designers also know class and object structures that can help avoid

refactorings�their designs are robust in the face of requirements changes�

A thorough requirements analysis will highlight those requirements that

are likely to change during the life of the software	 and a good design will

be robust to them ��	 p������

Even if there was a pattern for every change in the life of a system	 it seems

unlikely that every one of them could be anticipated when the system was �rst built�

For those changes that can be anticipated	 the supporting structure added by patterns

��

like the Decorator add considerable complexity to the design�

A design that uses Decorator often results in systems composed of lots of

little objects that all look alike� The objects di�er only in the way they are

connected	 not in their class or in the value of their variables� Although

these systems are easy to customize by those who understand them	 they

can be hard to learn and debug� ��	 p�����

��� Summary and Conclusion

Change is driven by external requirements� Such requirements commonly concern

externally observable behavior describable by use cases� In this chapter	 we considered

the maintenance problem of change in object oriented programs by looking at the

problem of adding use cases to existing programs�

Traditional object oriented design addresses change with a design model that either

implicitly assumes that change will be isolated in a single object or explicitly seeks

to localize change in separate objects� Current approaches use encapsulation and

inheritance to isolate the implementations of other parts of the application from the

objects that change� But both the design model of isolating change in separate objects

and the mechanisms of encapsulation and inheritance are inadequate for adding use

cases to an existing application�

The assumption that change will naturally be isolated in a single object in a design

based on entities in the problem space is unfounded	 and in the case of adding a use

case	 simply false� Deliberately encapsulating changes in separate objects complic�

ates designs in ways that make further changes progressively more di�cult� With

polymorphism	 there is no support for adding to existing interfaces to support a new

behavior� New steps can be added to existing behavior using polymophism and a

carefully constructed design	 but after each new step is added	 the design becomes

progressively less able to support change while reusing the existing code� Developers

��

may eventually choose to refactor parts of an application
s implementation� Rather

than isolating this kind of change	 subclass and client relationships propagate the

e�ects of refactored implementation	 requiring code duplication along entire networks

of name dependencies� Duplication of this type �or failing to perform the duplic�

ation� further complicates the task of code maintenance� Factoring of features for

families of application variants is also not well supported	 contributing yet more code

duplication�

None of the strategies for change discussed could produce the ideal implementation

of the recycling machine after applying both changes without editing large parts of the

original implementation� All of the common approaches to change leave artifacts of

having been applied as a change both through factorings uniquely due to the ordering

of the change	 and additional structuring needed to perform the change�

Neither design approach of encapsulating complete entities nor encapsulating com�

plete behaviors seemed especially suited to handling the problem of program evolu�

tion� In our search for an alternative approach to design	 we found an approach	

based on roles	 that seems more promising�

Chapter �

ROLES AND COLLABORATIONS� A BETTER

APPROACH TO DESIGN

Our approach to supporting change is based on a design model using roles and

collaborations� We originally described roles and collaborations in the introduction�

In this chapter we present a more extensive discussion of how roles and collaborations

are used in design	 and an example of how they support change�

In the �rst section	 we describe roles and collaborations at several levels and from

di�erent points of view� We also discuss how the same concepts	 and related concepts	

are used by others� In the second section we describe the issues posed by our goal

of turning roles into implementable and composable components and the re�nement

process that we use to address those issues� The third section reinforces the earlier

sections with a discussion of using role decomposition and re�nement to manage

complexity and facilitate reuse� The fourth	 and �nal section describes how change is

applied in the role and collaboration context�

This chapter is intended only to provide a theoretical understanding of the issues

and concepts� The actual steps in the design process and the process of applying

change are presented in Chapters � and �� Chapter � presents speci�c idioms for

handling common issues that arise in role composition�

��

�
�

�
�

�

�

�

CustomerPanel DepositReceiver ReceiptBasis InsertedItem DepositItem

addItem addItem�s�
addItem��item�

getItem��

init��item�

incr��

incr��

Figure ���� Diagram of interactions between objects for the Adding Item use case�

��� Collaborations and Roles

����� De�nitions

Abstractly	 a collaboration is a slice through an object oriented application from

the point of view of a single concern� More concretely	 a collaboration describes

a set of objects together with obligations on them to address a particular concern	

such as performing a task or maintaining an invariant� In our approach	 we use

collaborations to model the sequences of state changes and message passing in use

case�like scenarios� In the container recycling machine	 for example	 the Adding Item

use case is modeled as a collaboration involving the CustomerPanel	 DepositReceiver	

ReceiptBasis	 InsertedItem	 and DepositItem objects� The objects	 and the messages

they exchange to perform the adding item task	 are shown graphically as an interaction

diagram in Fig� ����

We de�ne a role as a part of a single object that addresses a particular concern�

Using our earlier de�nition of collaborations	 abstractly	 a role is a slice through a

single object from the point of view of a single concern� From the point of view of a

collaboration	 roles describe the parts of each object that address the concern of that

collaboration� Collaborations	 then	 may be seen more as collections of roles than as

��

collections of objects�

In the analysis	 roles specify abstract responsibilities or obligations that an object

must satisfy when it participates in a collaboration� In the design a role may specify

the functions and values that an object must provide� In the implementation	 a role

may correspond to a single method	 or a group of methods together with attributes�

In the collaboration for the Adding Item use case	 for example	 the DepositReceiver
s

role requires that it have an addItem�� method	 a list of DepositItem objects	 and

access to the ReceiptBasis object� When the DepositReceiver
s addItem�� method is

invoked by the CustomerPanel	 it responds by selecting the DepositItem object for the

type of the new container from its list of DepositItems	 or adding a new DepositItem

to the list if one for that container type does not exist� It then signals both the

ReceiptBasis and the DepositItem that an item has been inserted before returning

control to the CustomerPanel�

����� Properties

Roles provide a separation of concerns within objects� Objects are often involved in

more than one collaboration� As roles	 the di�erent concerns from di�erent collabora�

tions are treated separately� The DepositReceiver object	 for example	 participates in

both the Adding Item collaboration and the Print Receipt collaboration� In the Print

Receipt collaboration	 the DepositReceiver
s role is to pass the receipt information

from the ReceiptBasis to the ReceiptPrinter	 and to tell the ReceiptBasis to reset the

customer status�

Roles allow the creation of pieces of design addressing speci�c concerns without

being tied to other details of the object	 present in the �nal design� For example	 the

Adding Item use case de�nes DepositItem�like objects to hold information speci�c to

each item type	 such as its deposit value� The Print Item use case de�nes a similar

object that holds deposit values and textual descriptions speci�c to each item type�

The Validate Item use case also uses objects speci�c to item type to hold validation

��

criteria� It seems logical to de�ne these objects as being the same �and to use only one

instance of the deposit value attribute�� But in some designs the validation criteria

could be separate	 or part of some other object� Separating the activity of identifying

roles within use cases from the activity of identifying common objects across use

cases allows collaborations to be combined in di�erent ways in di�erent designs� This

�exibility in assigning roles to objects gives collaborations special value in design

reuse�

Roles provide a common link between models of functional behavior and models of

static structure� Collaborations and their interaction scenarios model behaviors� Col�

laborations can be mapped directly to use cases in the requirements analysis� Objects

and their classes model static structure based on entities� Objects in the design map

directly to implementation classes� Roles are units of design common to both views�

Figure �� shows the two views of the container recycling machine superimposed on

a single diagram�� The use cases are indicated by horizontal ovals and labeled on

the left side� Implementation objects are shown as vertical rectangles and labeled at

the top� The labels that appear where ovals and rectangles intersect indicate roles

�e�g� s��� Roles can be grouped by collaboration �e�g� �a�� a�� a�� a��� or by

object �e�g� �a�� p�� v���� Some objects do not participate in some collaborations

and thus do not have roles for those collaborations� Viewed another way	 not all

collaborations use every object�

����� Related Uses and Concepts

In analysis	 collaborations are often used informally	 without being named or doc�

umented	 to analyze how objects work together to address a concern ���	 �	 �	

���� Collaborations have also been formalized in contracts ����	 documented as pat�

terns ��	 ��	 and associated with framework implementations ���	 ���� Our use

�The InsertedItem class was left out to save space�

��

participant object classes

Customer
Panel

Deposit
Receiver

Deposit
Item

Receipt
Basis

Receipt
Printer

use case
collaborations
�

�
�Adding

Item
a� a� a� a�

�

�
�Print

Receipt
p� p� p� p� p�

�

�
�Validate

Item
v� v� v�

�

�
�Item

Stuck
s� s�

Figure ��� Conceptual view showing relationships among objects �vertical rect�
angles�	 collaborations �horizontal ovals�	 and roles �intersections��

of collaborations to reify use cases comes closest to that of Jacobson
s OOSE and

Reenskaug
s OORAM approaches ��	 ��	 ���� Neither the OORAM nor the OOSE

approach carries the concept of collaborations into implementation� We compare

design approaches in OORAM and OOSE to our own in more detail in Chapter ���

Riehle has created a notation for describing the structural relationships in col�

laborations ���	 ���� Behavioral relationships in collaborations can be documented

as interaction diagrams from Jacobson
s OOSE	 as shown in Fig� ��� ���� Similar

diagrams exist in other design methods	 notably scenario diagrams in OORAM ����	

timeline diagrams for use scenarios in Fusion ���	 ���	 and sequence diagrams in the

Uni�ed Modeling Language �UML� �����

In Reenskaug
s notion of a role	 an object participates in a collaboration by playing

a role in that collaboration ����� The term comes from a theater metaphor� Objects

are actors	 a collaboration is an ensemble	 and the concern is performing a play� In

��

this sense	 a role is an abstraction separate from any given actor�any actor can play

a given role if he or she knows the part� In the OORAM approach	 a role is something

an actor can do	 not something from which actors are constructed �����

The notion of role has a counterpart in object�oriented databases ��	 ���� The

issue arises	 for example	 when an employee object may play the role of trainee at

one time and manager at another	 or possibly even the same	 time� While both uses

of role address objects playing roles in di�erent contexts	 the database usage is more

concrete� In our usage	 if an object satis�es the requirements of a role	 it can play

that role� In the object�oriented database sense	 an object must have a role of that

name and can be queried for speci�c roles� Roles	 in this sense	 correspond to the

extension objects in Gamma
s extension object pattern ���� For database roles	 the

main issue is the ability of objects to dynamically change roles�

��� Issues and Role Re
nement

In our approach we transform roles into implementable and composable design com�

ponents in a process of re�nement� Initially	 the roles are considered in isolation	

largely without regard for other collaborations� In composition	 roles must not only

interact with the other roles in their collaboration	 but they must also coexist	 and in

some cases interact	 with other roles in the same object� Aside from details of imple�

mentation	 addressed in the next chapter	 there are also conceptual issues concerning

issues of overlap and dependency�

Roles are not always mutually exclusive� The concern of one collaboration may

overlap with the concerns of others� Di�erent collaborations may duplicate pieces of

each other
s behavior	 and often operate on the same variables� The Print Receipt

use case	 for example	 prints the container count that was computed in the Adding

Item use case� Overlaps between roles must be addressed if roles are to exist and

function as composable entities�

��

In the OORAM methodology	 issues of overlap and dependence are ignored� The

behavioral responsibilities of each object
s roles are simply grouped together in a step

called synthesis	 prior to both implementation and the detailed design� It is left to

each object
s implementor to decide how to combine the roles� In the Responsibility

Driven approach	 where roles don
t even exist in analysis	 responsibilities are taken

directly from the requirements scenarios and combined with others for each of an

application
s objects ���	 ���� Our goal is to defer any such mixing as long as possible�

Once responsibilities from di�erent concerns become mixed	 it becomes much more

di�cult to change individual concerns�

In our approach	 we isolate the shared and duplicated parts of roles in the process

of role re�nement� An important tool in this transformation is the ability to de�

compose collaborations and roles into smaller components addressing even narrower

concerns� We decompose roles into overlapping and non�overlapping parts	 each ex�

isting then as a component in its own right� Between two collaborations with a shared

overlap	 the overlap may be removed from one	 creating a dependence on the other	

or the overlap may be removed from both to form its own collaboration to speci�cally

address the shared concern� In a few cases	 the overlap may be harmless and the

duplication is simply left as incidental duplication�

In the container recycling machine example	 the Print Receipt role of the Deposit�

Receiver object uses the same count information that was accumulated by the object
s

Adding Item role� In this sense	 the two use cases overlap� Logically	 the two roles

should access the same variables� One way to address the overlap is to de�ne a use

case for maintaining counts that is separate from the activities of accepting containers

or printing the count values� This separation is shown graphically in Fig� ���� The

remaining Adding Item
 and Print Receipt
 use cases are then dependent on the new

Maintain Count use case for the actual handling of the values� Abstracting out the

common part	 we maintain only one de�nition of each activity�

The Maintain Count use case corresponds to Jacobson
s notion of an abstract use

��

object classes

Customer
Panel

Deposit
Receiver

Deposit
Item

Receipt
Basis

Receipt
Printer

use case
collaborations�
	

�

Adding
Item

a� a� a� a��
	

�

Print

Receipt
p� p� p� p� p�

c� c� c�

�a�

design
collaborations

Customer
Panel

Deposit
Receiver

Deposit
Item

Receipt
Basis

Receipt
Printer

�
�
�Maintain

Counts
c� c� c�

�

�
�Adding

Item�
a� a�� a�� a��

�

�
�Print

Receipt�
p� p�� p�� p�� p�

�b�

Figure ���� A graphical representation of overlap �a� and its removal as a separate
collaboration �b��

��

cases�a use case with inputs and outputs not visible to the user	 but	 rather	 tied

to other use cases ���� Rumbaugh referred to a use case providing services for other

use cases as an embedded use case ����� But the important property is not the user

visibility or lack thereof� Rather	 it is the uses relationship that exists between the

Maintain Count use case and both the rede�ned Adding Item
 and Print Receipt
 use

cases�

The alternative to isolating the overlap is to make only one of the two use cases

responsible for the common part� The other use case is then de�ned as being depend�

ent on the �rst�creating a uses relationship between the two� Since the count values

in the above example are simple variables	 it is also reasonable to leave the counts in

the Adding Item use case and augment its responsibilities to include giving out their

value and providing a reset function�

Roles can also be decomposed to reduce complexity or to isolate reusable parts�

The DepositReceiver role of the Adding Item use case maintains a list of Deposit�

Item objects� In the �nal design	 the list might be implemented as a linked list	 with

the nodes being DepositItem objects� We can separate out the basic linked list data

structure with list and node roles to be treated as a separate collaboration in the

design� The list role de�nes a head pointer and setNext�� and getNext�� methods

�used in the DepositReceiver object�	 while the next pointers are de�ned in the node

role belonging to each DepositItem object� Figure ��� shows a separate linked list

data structure collaboration being used for both the DepositReceiver
s list of Depo�

sitItem objects and the ReceiptBasis
 list of InsertedItem objects from the Adding

Item collaboration�

When removing part of the concern of a collaboration	 to be addressed in a separate

collaboration	 the integrity of each collaboration must be maintained� Conceptually	

the collaboration must still describe a set of objects interacting to address a concern�

The new concern may	 however	 be less than the original concern before the decom�

position� Stated concretely	 if a role calls another object as part of its responsibilities	

��

object classes

Customer
Panel

Deposit
Receiver

Deposit
Item

Receipt
Basis

Inserted
Item

use case
collaborations�
	

�

Adding
Item

a� a� a� a� a�

head� node� head� node�

���� ���� ���� ����

design
collaborations

Customer
Panel

Deposit
Receiver

Deposit
Item

Receipt
Basis

Inserted
Item

�
�
�Linked

List
head node

�

�
�Linked

List
head node

�

�
�Adding

Item�
a� a�� a�� a�� a��

Figure ���� A decomposition to separate the common concerns of a linked list data
structure into generally �and repeatedly� useful components�

�

as illustrated in Fig� ���	 that other object must have a role from the same collabor�

ation to �eld the call� On the other hand	 within an object	 the details of how a role

carries out its responsibilities may involve a call to another role in the same object�

The uses relationship between collaborations should be seen only within objects	 so

as not to violate the model�

��� Managing Complexity and Supporting Reuse

Roles represent an intermediate level of abstraction between an object and methods

or attributes� Objects can be described in terms of the roles they play in one or more

use case scenarios� The purposes of methods and attributes can then be understood

in the contexts of the use case collaborations in which they serve� Conversely	 roles

allow a use case
s requirements to be described in terms of the participation of the

design objects and their roles	 making it easier to trace the requirements into the

design�

In the earlier examples of dependencies between collaborations	 the actual de�

pendencies were restricted to occurring between roles within the same object� This

highlights another important aspect of role based design�dependencies are associ�

ated with a design context of manageable size� Dependencies between collaborations

occur within objects� Dependencies between objects occur within collaborations� In

the design process	 dependencies between collaborations are addressed through the

objects that they share� In maintenance	 an object
s dependency relationships can be

found and understood through the collaborations in which it participates� Like the

Law of Demeter	 this channeling of dependencies aids in understanding by reducing

the potential scope of what must be understood �����

Roles represent potential units of reuse� A role speci�es behavior and invariants

speci�c to its concern� Any object that satis�es the speci�cation can play that role�

For example	 the ReceiptPrinter object
s role in the Print Receipt use case �labeled p�

��

in Fig� ��� handles the interface to the printer and tells it what to print� In a di�erent

design	 the printer interface might be included as part of the CustomerPanel object�

In that case	 that p� role in the Print Receipt collaboration would be performed

by the CustomerPanel object� The role itself is not changed by the fact that it

is being performed by a di�erent object� A role is also not changed if the object

playing it changes in unrelated ways� The addition of Print Receipt
s p� role to the

CustomerPanel does not change that object
s roles in the Adding Item or Validate

Item collaborations	 or even its other p� role in the Print Receipt collaboration�

Collaborations can describe general concerns that are usable in many contexts�

The collaboration for the list data structure	 described above for holding DepositItem

objects	 is general enough to be used in many contexts� The collaboration
s list

manager role could be played by an object contained by the DepositReceiver	 or by

the DepositReceiver object itself� In the design of the container recycling machine

presented in Jacobson
s book	 the ReceiptBasis object had a list of InsertedItems

to count the customer
s inserted items by item type ���� The list data structure

collaboration could be reused to handle the second list� In this case the node roles

would be played by objects of the InsertedItem type� The same collaboration could be

reused again in other applications to describe yet other lists� The container recycling

machine is a small example with little repetition� In larger programs	 much more

repetition is likely�

An object can play more than one role in the same collaboration� In the previous

example of moving the Print Receipt
s p� role to the CustomerPanel object	 the

customer panel object played two distinct roles in Print Receipt collaboration� The

p� role has an interface to the receipt button and initiates actions when the button

is pressed� The p� role has the interface to the printer and tells the printer when and

how to print the receipt� In re�nement	 roles can be decomposed without creating

new collaborations� If a role contains more than one decision	 separating it into

component roles within the same object may allow decisions in one role component

��

to change without a�ecting the other components of the original role� In the Item

Stuck collaboration	 the s� role in Fig� �� interfaces to the container feed mechanism

to check if it is stuck	 and to an alarm to signal the stuck condition� Creating separate

roles for the two functions would allow the alarm response to be replaced by using

e�mail	 for example	 while leaving the feed interface untouched� The alarm part of

the CustomerPanel could also be reused in another collaboration in connection with

a di�erent problem needing operator attention�

When decomposing collaborations into roles	 we prefer to err on the side of creating

too many roles	 rather than too few roles� Being too conservative in decomposition

may result in de�ning a role that spans two objects in the �nal design� In the next

chapter	 we describe a method of implementation for which there is little or no cost

for decomposition within the same object�the compiler inlines it out�

Our approach to design analysis stresses both top down decomposition and step�

wise re�nement� In top down decomposition	 models of concerns are decomposed into

compositions of smaller models until a manageable level of complexity is attained for

each model� In stepwise re�nement	 general models of concerns are elaborated with

structure and details in iterative steps until the models are speci�c enough to correctly

model the solution as implementation code� In our approach	 a list of requirements

use cases is both decomposed and re�ned to achieve the �nal design�

��� Supporting change

In our design process	 new requirements appear in the form of new use cases� Require�

ments that add deviations or exceptions to an existing use case appear as extension

use cases� As we explained in Chapter 	 a behavior in an extension use case may

start or end within the behavior of the base use case	 possibly overriding part of the

original behavior ���� At the point of departure from the base collaboration	 the

role from the extension collaboration overrides the original sender or recipient of a

��

message from the base collaboration� The ability of one use case to override beha�

vior or insert behavior in the sequence of behavior de�ned by another use case is an

important factor in our approach
s ability to support change�

In the container recycling machine	 both the Validate Item and Stuck Item use

case replace or insert new behaviors in the existing Adding Item use case� The Item

Stuck collaboration
s role in the DepositReceiver overrides the addItem�� method

from the base role to intercept the addItem message� After the Item Stuck behavior

has been performed	 the Item Stuck role then calls the original addItem�� method

in the base role� The Validate Item collaboration overrides the addItem�� method

in the CustomerPanel object which calls a di�erent addItem method �with more

arguments in its signature� in the Validate Item role for the DepositReceiver object�

After the Validate Item behavior has been completed	 its role in the DepositReceiver

object calls the original addItem�� method from the DepositReceiver role of the base

collaboration�

When changes are applied	 existing objects and use cases can be further decom�

posed to accommodate the change within the existing structure� In the above ex�

ample	 the new behaviors from the Validate Item and Stuck Item use cases could be

added within the existing DepositReceiver object while still retaining the original role

from the Adding Item use case and also without a�ecting the role from Print Receipt

use case� However	 suppose the validation behavior had been included as part of the

original Adding Item use case� We
ll call this single use case Adding Valid Item� We

might then want to insert the check for a stuck container within the behavior of the

DepositReceiver
s combined Adding Valid Item role� At the time of adding the Stuck

Item change	 we could decompose the Adding Valid Item role into Validate Item and

Adding Item parts to support the new Stuck Item behavior� The Adding Valid Item

collaboration would then have two smaller roles in the DepositReceiver object	 but

would otherwise be unchanged�

In this chapter we described an approach to design that created opportunities for

��

change	 and reuse	 by decomposing objects into smaller role components	 and	 occa�

sionally	 decomposing roles again into even smaller components� The role approach

allows the application to be viewed both in terms of entities and in terms of behaviors	

and supports a separation of concerns along both axes	 simultaneously� Behavioral

changes that	 in other designs	 would cut across objects are captured in a role design

by roles in each of the a�ected objects�

In existing role based approaches	 like the OORAM approach	 the bene�ts of roles

extends only as far as the synthesis step� To get the full bene�t of a role based design	

the same roles must also exist in the implementation� Roles that exist only in the

analysis will indicate which objects are directly a�ected by a change� But they will

not tell us how much of each object to change	 nor what a�ect the change will have

on concerns in other roles�

The synthesis mechanism is not without its formal problems� This is

particularly apparent if we later modify one of the basic models	 i�e� we

later revise our understanding of a subarea and the corresponding role

model� In general	 we then have to reconsider all synthesis operations to

ascertain that they are still valid as descriptions of parts of the larger area

of concern� It is an area of further research to put the concept of synthesis

on a more solid formal foundation �����

Chapter �

ROLE ORIENTED IMPLEMENTATION

Building a standard object oriented implementation from a role oriented design

is a straightforward task� A role oriented design is an object based design with

additional intermediate details about the partitioning of concerns into roles� But	

without preserving the partitioning of objects into roles	 isolated changes to roles in

the design will lead to costly rework of larger parts of the implementation�

In this chapter we extend roles from the design into source code components�

The method of implementing roles must not only preserve role identities	 but also

support many of the same properties as roles in the design� These properties include

the ability to be reassigned to di�erent objects	 composed in di�erent groupings and

di�erent orderings	 and replaced by a decomposition into smaller pieces ful�lling the

same obligations� To support our method of change	 they must also be able to extend

and override the behaviors of other roles within the same object�

For choosing a method of implementation	 three speci�c properties of roles and

role composition stand out�

�� When added to the implementation of an object	 a role extends the interface of

that object�

� Roles can be composed in di�erent combinations in di�erent objects	 even within

the same application�

�� Roles place no restrictions on the objects of the other roles with which they

collaborate other than that they perform the appropriate role for that collabor�

��

ation�

Based on above three properties	 we derived the following three properties of the

implementation�

�� Roles should be composed using some form of inheritance or delegation�

� The implementation of a role should defer the choice of class or object from

which it inherits or to which it delegates for a later	 separate speci�cation of

composition�

�� The implementation of roles should also defer any speci�cation of the class or

object of any other roles with which it collaborates	 although it may specify the

part of its interface �type� used in the collaboration�

A more detailed discussion and analysis of properties needed for role implementation

is included in Appendix A�

In this chapter we present a method of implementation for role based designs� In

our approach	 roles are implemented as source code components�speci�cally	 class

templates de�ned in a stylized way�and composed into classes using separate speci�c�

ation statements�classes de�ned in terms of instantiations of those class templates�

Our approach requires no special development environment and uses only standard

features available in the C�� language� In our earlier papers	 we compared our tem�

plate approach to more traditional subclassing for frameworks ���� and demonstrated

its use for decomposition in general �����

Our intent is not to imply that this method of implementation is the only avail�

able approach to supporting roles in the implementation� There is other work on

object factoring	 some of which may provide equivalent support� In Chapter ��	 we

mention two other approaches	 one using a Smalltalk metaclass and another using

a preprocessor that we believe would work as well	 and perhaps exhibit other useful

properties�

��

template �class CustomerPanelType�

class DepositItemType�

class ReceiptBasisType�

class SuperType�

class AddingItemDRRole � public SuperType �

CustomerPanelType �customerPanel�

ReceiptBasisType �receiptBasis�

LinkedList�DepositItemType� depositItemList�

���

��

Figure ���� Partial implementation of the DepositReceiver role in the Adding Item
collaboration�

Our goal in this thesis is to present a development approach that uses roles to sup�

port software evolution� To that end	 we need a method of implementation to round

out the process� The method presented here not only ful�lls the basic requirement

of supporting roles	 but also provides static type checking and an especially e�cient

runtime implementation� In this chapter	 and in the subsequent discussion of our

development process	 we will assume only the one method of implementation� But

most of the discussion of issues unique to C�� templates are con�ned in this chapter�

��� Roles as Class Templates in C��

The six properties needed for role implementation	 described above	 can be satis�ed

using type parameterization if it also includes parameterized inheritance or delegation�

In our approach	 we implement roles as class templates in C�� and compose roles

into classes by instantiating their templates with the appropriate bindings�

For each role	 we de�ne a separate class template that is parameterized by each

of the collaborators� For example	 the DepositReceiver role in the collaboration for

the Adding Item use case might be de�ned in part as in Fig� ����

The CustomerPanelType	 DepositItemType	 and ReceiptBasisType parameters

��

template �class CustomerPanelType�

class ReceiptBasisType�

class ReceiptPrinterType�

class SuperType�

class PrintReceiptDRRole � public SuperType �

CustomerPanelType �customerPanel�

ReceiptBasisType �receiptBasis�

ReceiptPrinterType �receiptPrinter�

���

��

Figure ��� Partial implementation of the DepositReceiver role in the Print Receipt
collaboration�

indicate that the AddingItemDRRole will collaborate with one or more objects with

an as yet unknown class playing each of the following roles� the CustomerPanel role	

a DepositItem role and the ReceiptBasis role� The SuperType parameter is used

in every role de�nition in our approach	 since every role is itself part of some as

yet unknown class� The AddingItemDRRole template corresponds to the a� role in

Fig� ��� The Adding Item collaboration also includes an InsertedItem role	 but the

DepositReceiver role does not interact with it directly�

The DepositReceiver role in the PrintReceipt collaboration might be similarly

de�ned	 in this case collaborating with CustomerPanel	 ReceiptBasis	 and Receipt�

Printer roles	 as shown in Fig� ��� In the two templates in Figs� ��� and �� we used

the same names for corresponding classes �e�g� CustomerPanelType� in the di�erent

collaborations� However	 we could as well have used di�erent names�the Customer�

Panel in one collaboration may correspond to the same object as the SlotExaminer

in a di�erent collaboration�

We compose roles into classes by instantiating templates like these	 binding the

template parameters to the speci�c classes that play the roles� An instantiation of

the PrintReceiptDRRole might	 for example	 appear as in Fig� ���� The declaration

��

class DepositReceiver��Class

� public PrintReceiptDRRole � CustomerPanelClass�

ReceiptBasisClass�

ReceiptPrinterClass�

DepositReceiver��Class � ���

Figure ���� Template instantiation of the Print Receipt role in the DepositReceiver
object
s class�

class DepositReceiver��Class

� public AddingItemDRRole � CustomerPanelClass�

DepositItemClass�

ReceiptBasisClass�

emptyClass � ���

Figure ���� Template instantiation of the Print Receipt role in the DepositReceiver
object
s class�

in Fig� ��� says that the DepositReceiver�Class includes the PrintReceiptDRRole�

It also says that speci�c classes	 CustomerPanelClass	 ReceiptBasisClass and De�

positItemClass	 play the CustomerPanel	 DepositItem	 and ReceiptBasis roles in the

collaboration with the DepositReceiverPRRole� DepositReceiver��Class is the class

that we extended to get DepositReceiver�Class�

The DepositReceiver��Class might be de�ned in terms of the AddingItemDRRole�

Its instantiation appears in Fig� ���� This instantiation statement de�nes DepositRe�

ceiver��Class as a collaborator with objects of the CustomerPanelClass	 DepositItem�

Class and ReceiptBasisClass playing CustomerPanel	 DepositItem and ReceiptBasis

roles	 respectively	 in an Adding Item collaboration� The emptyClass �essentially a

default base class� parameter simply indicates that the DepositReceiver��Class is a

base class�

The ReceiptPrinterClass	 which has only one role and no references to other col�

laborators	 might be composed as in Fig� ���� Class names like ReceiptPrinter��Class

�

class ReceiptPrinter��Class

� public PrintReceiptRPRole � emptyClass � ���

typedef ReceiptPrinterClass ReceiptPrinter��Class�

Figure ���� Template instantiation for the one role ReceiptPrint class�

and DepositItem�Class refer to classes at intermediate stages of composition� The

�nal typedef statement aliases the externally used class name to the class at the ap�

propriate level of composition� Our choice of using class declarations and typedefs is

dictated by C�� considerations for supporting forward reference �class declaration�

and permitting the addition of a constructor in the �nal declaration �typedef��

��� C�� Issues

The next chapter presents a collection of implementation idioms that address issues

of composition and control �ow� Some of those idioms encounter issues speci�c to

C��� In this section	 we describe language speci�c issues and their resolution�

����� Typedef Aliasing Versus Class De�nition

Forward reference	 as mentioned earlier	 is one of the reasons we don
t often use

typedef statements to instantiate template components� In a forward reference	 we

wish to refer to a class that has not yet been de�ned� We need forward reference to

allow circular references	 e�g� two classes that each have a pointer to instances of each

other
s class�

A typedef creates an alias name	 not a class name� In the �rst set of declarations

in Fig� ���	 foo� is an alias	 but the real class name is boo�empty�� The name foo� is

an alias for moo�boo�empty��� We cannot forward declare an incomplete foo�	 using

typedef foo�� If we forward declare foo� with class foo��	 we cannot rede�ne the

foo� name in a typedef later on� it must be a class de�nition�

��

typedef boo�empty� foo��

typedef moo�foo�� foo��

class goo� � public boo�empty� ���

class goo� � public moo�goo�� ���

Figure ���� Corresponding but not equivalent uses of typedef and class de�nition�

Many compilers name template instantiations by concatenating the template name

with the names in the bindings� Lists of typedef instantiations of nested templates can

lead to long names that are ugly to look at in the debugger and that quickly over�ow

name bu�ers� The moo�boo�empty�� name in the above example above illustrates

how the names can grow with nesting� By placing each template instantiation within

the declaration of a concrete class	 the name nesting never occurs� The concrete class	

though otherwise empty	 provides a short concrete class name�

The class declaration form of composition is not without its disadvantages� A

minor disadvantage is that each de�nition creates two classes in the hierarchy� The

de�nition of goo� in Fig� ��� produces a class called moo�goo�� and an empty subclass	

called goo�� A bigger disadvantage is that the moo template cannot use a constructor

with arguments	 because the goo� subclass does not de�ne a constructor� If we

wish to de�ne a component with a class constructor	 we compose it in the most

derived position in the class	 and use a typedef to instantiate it� An example of using

constructors appears in the discussion of proxies and handle initialization in Chapter

��

����� Callbacks to Methods

In C��	 callbacks to methods are complicated by the fact that methods can
t be

called with function pointers�method calls need an additional �this� pointer to the

object instance that is not part of a normal function call� Instead	 we must de�ne a

��

non�member function for each class whose member we wish to call� The non�member

function takes an object pointer	 in addition to the arguments of the call	 and uses

that object pointer to call the method�

The resizeCallback template in Fig� ��� shows the callback function for a resize��

method� By using a template function and parameterizing the object type	 we de�ne

only one template for all registered resize�� callbacks� The variable declaration for the

rfunc pointer in the resizeRegisterMethod instantiates a function speci�c for the class

of the listener
s SuperType� The rfunc pointer and object pointer are then cast to the

more general forms used by the announcer� When resize�� is called by the function	

it will be speci�cally targeted at the component before the ResizeListener component

in the composition�

��� Discussion

Templates are not new to software developers� But parameterized inheritance	 while

available	 is not as well known nor often used� Stroustrup
s C�� manual includes

one obscure example involving private inheritance����� Among those who use it	

it has always been treated as a technique to be applied in special case situations	

e�g� composing a family of components from layered features� Using parameterized

inheritance for every class involves a leap to a di�erent style of programming�

Only a few additional lines of code are needed to turn a code fragment into a

template� The deferred decisions about the types of the collaborators are assigned

parameter names which are then used in the source code to implement the role� The

code is written as if the other types are known� The process is thus straightforward�

Certain issues may arise in implementing two templates that each use a parameter

that will be bound to the type of the other� We describe ways of addressing the

mutual dependence issue in the section on forward reference in the next chapter�

By using inheritance for composition	 the interfaces of all the roles in a composition

��

�� Type declaration for announcer�s general callback function

typedef void 	�ResizeCallback
	int width� int height� void� obj
�

�� Struct to store callbacks with their object pointers

struct ResizeCallbackNode �

ResizeCallbackCell	
 � callback	NULL
� obj	NULL
 ���

ResizeCallback callback�

void� obj�

��

�� Announcer component

template�int MAXCALLS� class SuperType�

class ResizeAnnouncer � public SuperType �

ResizeCallbackCell�MAXCALLS� resize�callbacks�

public�

void registerResize	ResizeCallback callback� void� obj
 � ��� �

void unregisterResize	ResizeCallback callback� void� obj
 � ��� �

void resize	int width� int height
 �

�� Call each registered callback in turn

for	int i��� i�MAXCALLS �� resize�callbacks�i��obj �� NULL� i��

resize�callbacks�i��callback	width� height�

resize�callbacks�i��obj
� �

��

�� Template declaration for listenerspecific callback function

template �class ObjectType�

void resizeCallback	int width� int height� ObjectType� obj
 �

obj�resize	width�height
� �

�� Listener component

template�class SuperType�

class ResizeListener � public SuperType �

public�

void registerResizeListener	
 �

�� Declaration instantiates function template for SuperType

void 	�rfunc
	int�int�SuperType�
 � �resizeCallback�

registerResize	ResizeCallback	rfunc
�	void�
this
� �

void unregisterResizeListener	
 �

void 	�rfunc
	int�int�SuperType�
 � �resizeCallback�

registerResize	ResizeCallback	rfunc
�	void�
this
� �

��

Figure ���� Code for callback collaboration to register and call an object
s resize
method as a callback�

��

are composed into a single interface� Components that call methods in other roles

do not need to know if two calls are to the same role or separate roles� This allows

one role to be replaced by two smaller roles	 or two roles to be combined	 without

a�ecting clients� Also	 when roles call other components within the same object	 they

simply call the method on their inherited superclass interface� There is no composition

syntax involved�

Template instantiations to form the implementation of application objects is per�

formed by sequences of class declarations	 as described above� For large applications	

the lists of template instantiations can be quite long	 making the task of writing out

the instantiations somewhat tedious� Although the statements describe the structure

of the application	 it is di�cult to perceive that structure from a quick glance at the

code� In Chapter � we present a visual representation of the application structure�

All of the information needed to produce the template instantiations is available from

the visual representation�

The composition is of roles into classes is performed statically at compile time�

All of the interfaces between roles within an object and between objects are checked

at compile time when the compiler composes the application� Method calls that

cannot be bound to methods are reported as compile time errors	 when the template

instantiations are compiled	 or link time errors	 if they involve calls between objects

instantiated in di�erent �les�

Because non�virtual methods are used	 the compiler is free to inline method calls

within objects� Inlining saves not only the indirection of dynamic binding	 but also

the context switch overhead of the call itself� In a comparison with a traditional

framework implementation for a graph traversal example	 our approach yielded a

factor of two improvement in speed	 in addition to the added compositional �exibility	

that was our real objective ����� Dynamic binding is still available for things that really

do vary at runtime� But because of our style of composition by template instantiation	

dynamic binding is not needed to support overriding in evolution or specialization�

��

The template method of implementation separates the implementation of roles�

written as templates�from the composition of roles�speci�ed as template instanti�

ations� The method of implementation itself is fairly easy to describe and use� Its

use within our design approach	 however	 has many facets	 as described in the next

three chapters�

Chapter �

IDIOMS FOR ROLE ORIENTED IMPLEMENTATION

In this chapter	 we present a set of idioms that address structural and compos�

itional concerns� They address semantic and syntactic dependencies between roles	

and wider issues of control �ow� The use of these idioms allows the roles de�ned in

collaborations to be implemented in a way that is independent of the context of their

use�

The idioms presented here are consistent with	 and enhance	 our compositional

model of programming� The developer controls bindings and control �ow within ob�

jects	 and also between objects	 by inserting components in the composition� Problems

that may result from certain compositions can be resolved by the addition of other

components�

Several of the idioms described here have been used in one form or another in

other contexts� In each case	 however	 the idiom acquires a unique use	 a unique

implementation	 or both	 when applied to our approach of template component com�

position� We have attempted to cite signi�cant prior work	 where we are aware of

it	 and to retain the original terminology� The role decomposition idiom	 which is

central to our approach	 and the data structure idiom are new to this work�

��� Idioms for Semantic Issues of Composition

In the design	 the semantics of role composition can take many forms� Roles can

extend the behavior of other roles	 replace the behavior of other roles	 or augment the

behavior of other roles� The idioms in this section describe how to achieve particular

��

semantic e�ects in the physical composition of role components�

	���� Method Call Interception

Calls between two components can be intercepted by a third component that de�nes

a method with the same name and signature as the call to be intercepted� We simply

place the third component between the other two� Call interception is an important

mechanism for applying change� It allows us to replace existing behavior on a per�

manent or conditional basis	 without editing either of the original components� By

including code in the new method to also call the original method	 though the inher�

ited SuperType interface	 we can add behavior within an existing sequence without

actually replacing anything�

Method intercepting components can also be used to temporarily monitor the

tra�c in certain method calls� In a monitor component	 the intercepting methods

might store or report the arguments in their calls and then call the same method

pre�xed by the SuperType�

	���� Role Decomposition

Component templates allow role implementations to be decomposed into two or more

smaller components	 while hiding this decomposition from the other parts of the

application� Suppose we have a role template	 called BigRole	 as shown in Fig� ����

BigRole can be decomposed and implemented by two components	 Part�Role and

PartRole	 and shown in Fig� ���

The de�nition of the BigRole template in Fig� �� is interchangeable with the

de�nition in Fig� ���� Because of the inheritance order between the two parts	 no code

in the Part�Role should try to access item b or methodD�� de�ned in the PartRole

component�

An application class could be composed from EarlierUndisturbedRole	 BigRole

and LaterUndisturbedRole role templates as shown in the upper part of Fig� ����

��

template �class SuperType�

class BigRole � public SuperType �

public�

int item�a� item�b�

void methodC	
 ������

void methodD	
 ������

�

Figure ���� A single role component called BigRole�

template �class SuperType�

class Part�Role � public SuperType �

public�

int item�a�

void methodC	
 ������

�

template �class SuperType�

class Part�Role � public SuperType �

public�

int item�b�

void methodD	
 ������

�

template �class SuperType�

class BigRole � public Part�Role�Part�Role�SuperType� � ���

Figure ��� BigRole decomposed and implemented by two separate components�

��

class appClass� � public EarlierUndisturbedRole�empty� ���

class appClass� � public BigRole�appClass�� ���

class appClass � public LaterUndisturbedRole�appClass�� ���

class appClass� � public EarlierUndisturbedRole�empty� ���

class appClass�a � public Part�Role�appClass�� ���

class appClass� � public Part�Role�appClass�a� ���

class appClass � public LaterUndisturbedRole�appClass�� ���

Figure ���� Two alternative compositions using either the BigRole component or its
two smaller part components�

The same appClass could be composed using the decomposed parts	 Part�Role and

PartRole	 as shown in the lower part of Fig� ����

There are many reasons for splitting a role� The original role might encode two

or more separate decisions that are independently changed	 or omitted	 in di�erent

versions of the application� The original role might contain a sequence of behaviors

to which we want to add an additional processing step somewhere in the middle�

Splitting the sequence into two parts in separate roles	 with a method call in between	

allows us to interpose the additional	 or alternative	 processing where needed in some

versions	 but not others�

The importance of the ability to decompose a role and use a composition of the

new parts in place of the original role is that it is not necessary to choose the right

decomposition for every future change when the application is �rst designed� Splitting

a role in an existing design only a�ects the role that is split�

If	 when applying a change	 it is necessary to split	 or upgrade	 an existing com�

ponent to accommodate the change	 the split	 or upgraded	 components should be

applied in the context of the original application �rst� This allows the subdivision to

be tested and veri�ed in comparison with the original	 before being placed in the new

application�

�

template�class SuperType�

class Ignition � public SuperType �

public�

start	
 � ��� �

�

template�class SuperType�

class Interlock � public SuperType �

int locked�

public�

int isLocked	
 � return locked� �

void lock	
 � lock � �� �

void unlock	
 � lock � �� �

�

template�class SuperType�

class IgnitionLiftsInterlock � public SuperType �

public�

void start	
 � if	�isLocked	

 SuperType��start	
� �

�

Figure ���� The implementation of separate Ignition and Interlock components and a
lifter to add the interlock feature to the Ignition interface�

	���� Lifters

A lifter coordinates the behavior of two components by lifting the semantics of one

into the interface of the other ����� Each of the two components addresses its own

concern in isolation	 while lifters address their interaction� For example	 consider a

car
s ignition system and a separate interlock feature� The ignition has only a start��

method� The interlock maintains a lock state and provides isLocked��	 lock��	 and

unlock�� methods� A lifter to add the lock feature to the ignition semantics would

implement a start�� method to override the start�� method of the ignition� The

implementation of both components and the lifter is shown in Fig� ����

We then add a transmission neutral sensor to allow the car to start when the

��

template�class SuperType�

class Neutral � public SuperType �

int neutral�

public�

int inNeutral	
 � return neutral� �

void shiftToNeutral	
 � neutral � �� �

void shiftToGear	
 � neutral � �� �

�

template�class SuperType�

class NeutralLiftsInterlock � public SuperType �

public�

void shiftToNeutral	
 � SuperType��shiftToNeutral	
� unlock	
� �

void shiftToGear	
 � SuperType��shiftToGear	
� lock	
� �

�

template�class SuperType�

class InterlockLiftsNeutral � public SuperType �

public�

void lock	
 � if	�inNeutral	

 SuperType��lock	
� �

�

Figure ���� The implementation of a neutral sensor and two lifters to coordinate it
with the Interlock feature of Fig� ����

transmission is in neutral	 and prevent the car from being started	 under normal

circumstances	 if it is in gear� Figure ��� shows the implementation of a neutral

sensor and the two lifters to coordinate its behavior with the interlock feature�

In a car with a manual transmission	 we can add a clutch sensor that allows the car

to be started if the clutch is depressed	 but prevents the car from being started	 under

normal circumstances	 if the clutch is engaged� Figure ��� shows the implementation

of a clutch sensor and the two lifters to coordinate its behavior with the interlock

feature�

We can compose these components and their lifters in a number of ways to handle

cars that require the transmission to be in neutral to start	 fIgnition	 Interlock	 Neut�

��

template�class SuperType�

class Clutch � public SuperType �

int engaged�

public�

int isEngaged	
 � return engaged� �

void engage	
 � engaged � �� �

void disengage	
 � disengaged � �� �

�

template�class SuperType�

class ClutchLiftsInterlock � public SuperType �

public�

void engage	
 � SuperType��engage	
� lock	
� �

void disengage	
 � SuperType��disengage	
� unlock	
� �

�

template�class SuperType�

class InterlockLiftsClutch � public SuperType �

public�

void lock	
 � if	isEngaged	

 SuperType��lock	
� �

�

Figure ���� The implementation of a clutch sensor and two lifters to coordinate it
with the Interlock feature of Fig� ���� interface�

��

ralg	 cars that require the require the clutch to be disengaged to start	 fIgnition	

Interlock	 Clutchg	 and cars that can start if either the transmission is in neutral

or the clutch is disengaged	 fIgnition	 Interlock	 Clutch	 Neutralg� The reason for

separating the two directions of lifting is evident in the last composition	 where the

InterlockLiftsClutch lifter must appear in the base class of the NeutralLiftsInterlock

lifter	 while the corresponding InterlockLiftsNeutral lifter must appear in the base

class of the ClutchLiftsInterlock lifter�

The lifter idiom is another illustration of our building block style in which the

choice of blocks and order of composition control the semantics� The main bene�t

of using lifters is that they allow the core components to address a speci�c concern

without the confusion of how it should interact with other concerns� They then allow

the core components to be semantically combined with a range of other components�

In this way	 they are related to Sullivan
s mediators ����� By using the semantics of

inheritance to detect and coordinate responses to events	 lifters avoid the initialization

and runtime overhead of implicit invocation� Because lifters are pair�wise and direc�

tional	 it may require several lifters to duplicate the coordination of a more general

mediator�

	���� Composable Data Structures

Traditional data structure libraries encapsulate data structures as single monolithic

components� Often such libraries must either restrict the choice of features	 or provide

large numbers of similar data structures to cover di�erent combinations of features ����

Monolithic data structures also have di�culty interacting with the data they hold	

the clients that use them	 and other data structures� For example	 clients must pass

in separate components to perform data comparisons for sorting� The result of a

search returns yet another component	 e�g� an iterator	 which then must be queried

to get the actual data� By providing a set of subcomponents with which di�erent

data structures can be composed	 we support user�customizable choices of features	

��

template�class NodeType� class SuperType�

class ListNode � public SuperType �

NodeType �next�

public�

ListNode	
 � next	NULL
 ��

NodeType� getNext	
 � return next� �

void setNext	NodeType� n
 � next � n� �

��

template�class NodeType� class SuperType�

class LinkedList � public SuperType �

NodeType� head�

public�

LinkedList	
 � head	NULL
 ��

NodeType� getHead	
 � return head� �

void listAppend	NodeType� here� NodeType� n
 � ��� �

void listRemove	NodeType� n
 � ��� �

��

Figure ���� Two components for a simple linked list implementation�

and closer integration between data structures and other code�

As with other objects	 we subdivide data structures into smaller components ad�

dressing separate concerns� Application developers can then choose components for

the allocation strategy �e�g� heap or pooled�	 the sorting algorithm �e�g� optimized

for nearly sorted or randomly sorted lists�	 and insert and �nd behaviors �e�g� eager

or lazy sorting�� The allocation component can be reused for both trees and lists�

But decomposing data structures allows us to do other things as well� By providing

separate node components	 nodes can not only hold client data	 they can also be client

data� Figure ��� shows an implementation of two simple templates for a linked list and

its nodes� The NodeType in instantiations of both the ListNode and the LinkedList

must include a ListNode in its composition�

Figure ��� shows class declarations for a client of the simple linked list� The class

��

�� Class declaration for forward reference�

class ClientData�

�� Data is the class that client would have used for data

�� ClientData is the specialized class that client actually uses

class ClientData � public ListNode�ClientData�Data� ���

�� List of ClientData is a base class

class List � public LinkedList�ClientData�empty� ���

�� ClientOfList inherits from List 	instead of containing one

class ClientOfList � public Client�List� ���

Figure ���� Class declarations for client that uses the LinkedList�

called Data is the class that the client would normally have used for data� The new

class	 ClientData	 is a subclass that specializes Data by adding the ability to function

as a node in a LinkedList� The LinkedList template adds the property of having

a list head	 and operations on that list	 to any object into which it is composed�

Here it is instantiated as a base class called List� Because the client
s code derives

from List in the declaration of ClientOfList	 client code can call list methods locally

�e�g� listRemove�node� instead of list�listRemove�node��� While it seems subtle	 the

advantage of list inheritance over list containment is that there is no instance name

�e�g� �list�� on which list�using code has to agree� Reducing sources of context

dependence makes components	 like the Client component	 easier to reuse�

When the client
s code calls getHead�� or getNext�� on a node	 the pointer it gets

back is a pointer to its data� Client code that is written to operate on Data does not

have to be changed for operating on ClientData� In particular	 there are no extra

dereference or access operations� Yet	 the data is also a node	 and	 as such	 a place

holder in the list� The client �nds the next element in the list by calling getNext��

on its data� There is no reason for using a separate iterator�

Any data that the client appends to the list must be an instance of ClientData�

In our style of deferring bindings to type	 all objects know the full types of all other

��

template�class NodeType� class SuperType�

class TreeNode � public SuperType �

NodeType �right� �left�

public�

TreeNode	
 � right	NULL
� left	NULL
 ��

NodeType� getLeft	
 � return left� �

NodeType� getRight	
 � return right� �

void append	NodeType� n
 � ��� �

��

template�class NodeType� class SuperType�

class Tree � public SuperType �

NodeType� root�

public�

Tree	
 � root	NULL
 ��

void treeInsert	NodeType� n
 � ��� �

void treeRemove	NodeType� n
 � ��� �

NodeType� treeFind	NodeType� n
 � ��� �

��

Figure ���� Two templates for a simple tree data structure�

objects� Thus a requirement that Data be instantiated as ClientData does not pose

a special problem�

With data structures found in libraries	 like the STL	 we can create a tree of lists

or a list of trees	 but we can
t merge a tree with a list to create a data structure that

is both a tree and a list� With our data structure subcomponents	 we can�

Figure ��� shows the templates for a simple tree implementation� To use the tree	

a client would declare classes as for the list in Fig� ����

The Tree template declares treeInsert�� and treeFind�� operations� Because data

and nodes share the same class in our implementation	 the �nd operation takes an

instance of the same class as the nodes� The data�node instance that is passed	

however	 is not expected to be a node in the tree� It is only used for testing greater

than and equality on its data value in the search�

��

template�class NodeType� class SuperType�

class ListLiftsTree � public �class SuperType� �

public�

void listAppend	NodeType� here� NodeType� n
 �

treeInsert	n
� SuperType��listAppend	here�n
� �

void listRemove	NodeType� here� NodeType� n
 �

treeRemove	n
� SuperType��listRemove	here�n
� �

��

Figure ����� Lifter for merging tree semantics with list interface�

Our implementation of the tree data structure has no parameter or argument for

the comparison operator� It uses the comparison operator of the data	 directly� By

composing the TreeNode part or the data node in a more derived position than the

data	 the tree code can call the data
s comparison operator directly� To use a special

comparison operator	 we insert a translation component	 as described later in Section

����	 between the TreeNode and the Data�

By merging the tree and list data structures	 we can get a structure that is both

a list to arrange our data in an arbitrary order	 and a tree that allows us to �nd list

nodes in log n time� In order to make sure that nodes inserted into the list part also

get inserted in the tree part	 we use a lifter component	 as described above	 to add

the tree insert to the calls of the list interface� The ListLiftsTree lifter is shown in

Fig� ����� The declarations for the fully merged composition is shown in Fig� �����

In the TreeList structure	 data	 list nodes	 and tree nodes all share the same class�

A pointer returned from either getNext�� or �nd�� operations is client data	 a list

node	 and a tree node�

If we added a second linked list in our composition	 we could have two arbitrary

orderings of the data� Techniques for addressing the name ambiguities with repeated

inheritance	 as would be the case with two linked lists	 is discussed as a separate

idiom	 later in Section �����

��

�� Class declaration for forward reference�

class ClientData�

�� Data is the class that client would have used for data

�� ClientData is the specialized class that client actually uses

class ClientData� � public ListNode�ClientData�Data� ���

class ClientData � public TreeNode�ClientData�ClientData�� ���

�� List of ClientData is a base class

class List � public LinkedList �ClientData�empty� ���

class TreeList� � public TreeList �ClientData�List� ���

class TreeList � public ListLiftsTree�ClientData�TreeList�� ���

�� ClientOfList inherits from List 	instead of containing one

class ClientOfTreeList � public Client�TreeList� ���

Figure ����� Class declarations for a merged Tree and LinkedList�

��� Idioms for Syntactic Issues of Composition

Roles interact through their interfaces� Sometimes two interfaces don
t support the

intended connection	 or other components interfere� The direction or scope of a

connection relative to the order of composition may also pose a problem� The idioms

in this section address problems of interface mismatch	 visibility	 and interference�

	���� Disjoint Name Spaces and Repeated Inheritance

Name clashes can play havoc with two goals of software development	 independent

development and code reuse� Mechanisms for composing classes	 such as dynamic

binding and multiple inheritance	 often don
t allow the same name to mean di�erent

things in di�erent parts of the composed class� When di�erent fragments are de�

veloped in di�erent places	 or at di�erent times	 the same name may inadvertently be

repeated in di�erent fragments� This problem most likely occurs with simple names

for common concerns	 such as sum	 count	 total	 or next� Even if the code is developed

by the same developer at the same time	 some components may be so generally useful

that we want to use them twice in the same class� As examples of this last situation	

��

template�class NodeType� class SuperType�

class NodeRole � public SuperType �

NodeType� next�

public�

void setNext	NodeType� n
 � next � n� �

NodeType� getNext	
 � return next� �

��

Figure ���� Linked list node implementation�

class DataClass�

class Data�Class � public Data�empty� ���

class Data�Class � public NodeRole�DataClass�Data�Class� ���

class DataClass � public NodeRole�DataClass�Data�Class� ���

Figure ����� Class declarations for a node in two separate linked lists�

we may want to include	 or be part of	 more than one linked list	 or provide access

controls for more than one server or queue�

Except where the composition really does change at runtime	 our approach to

composition uses single inheritance with static binding� The meaning of a name is

speci�c to its position in the composition and can coexist with other uses of the same

name in other parts of the composed class� For example	 consider the simple linked

list node role shown in Fig� ���� If we want our objects to be usable as nodes in

two linked lists	 we simply include the NodeRole twice in the composition	 as shown

Fig� �����

If we have an object of class DataClass	 called x	 x�getNext	
 will return the

second next pointer	 while 		Data�Class
x
�getNext	
 will return the value of the

�rst next pointer� When using type coercion in the implementation of a role	 the name

of the type to which the pointer is coerced would be implemented as a parameter�

The parameter would then be bound to the actual intermediate class name in the

�

template�SuperType�

class TranslateFunFoo � public SuperType �

public�

void fun	
 � foo	
� �

��

Figure ����� A template component to translate calls to fun�� into calls to foo���

speci�cation for template instantiation�

If roles that need to use the �rst NodeRole
s methods are included between the

two NodeRoles in the composition	 their calls will bind to the methods of the �rst

NodeRole� Placing roles that use methods of the second NodeRole after the second

NodeRole in the composition will bind their setNext�� and getNext�� calls to the

methods of the second NodeRole� Where such placement is not su�cient	 such as a

role that needs to access methods in both NodeRoles	 type pre�xing or name trans�

lation	 as described below	 can also be used to discriminate between the duplicated

names�

	���� Name and Signature Translation

When components are developed separately	 they may end up using di�erent names

for the same method semantics or the same name for di�erent method semantics�

Where a method in one component calls a method de�ned in another but with a

di�erent name	 how can the compiler know which method to bind to� We can often

resolve the di�erence by providing an intermediate translation method in a separate

component	 and composing that component between the caller and the callee� The

translation method could de�ne a method name fun�� and forward them as a call

to foo��� A good compiler will remove the extra context switch of a translation

method and simply establish the correct bindings� The implement of the fun�� to

foo�� translation is shown in Fig� �����

��

A translation can do more than change a method call
s name� It can also rearrange

the order of arguments	 provide default values for missing arguments	 and perform

simple operations to compute new argument values� The changes to method calls

that can be made in a translation component correspond to the changes described in

Chow
s thesis on incompatibility in library upgrades �����

Translation can also address the problem of components using the same name

with di�erent meanings� Consider the case of a method in one component calling the

fun�� method in another component� Suppose a third component	 appearing between

the �rst two	 also de�nes a method named fun��� We can route the fun�� call around

the interloper by placing a translation on either side	 translating it �rst to foo��	 and

then	 after the interloper	 translating foo�� back to fun���

	���� Type Pre�xing

Type pre�xing is another way of routing the binding of a method call	 like the fun��

call in the previous example	 around an interloping usage of the same name� When we

compose components to form application classes	 each component is added	 in turn	

by instantiating its template in a class de�nition� The resulting list of declarations

de�nes a series of class names at intermediate stages of composition� We can use these

intermediate class names as type pre�xes to direct method calls to speci�c components

in the composition� Figure ���� shows the implementation of a template to redirect

the fun�� method call�

Continuing the interloping fun�� method de�nition	 suppose the initial composition

of the Stooges class has three components	 Larry	 Mo	 and Curly� The components are

composed in the above order in class de�nition statements for classes named Stooges�	

Stooges	 and Stooges	 respectively� If both Larry and Mo de�ne a method fun�� and

Curly wants to call the Larry implementation of fun��	 we would add the Pre�xFun

component between Mo and Curly� Class declarations with template compositions

for the complete composition are shown Fig� �����

��

template�class PrefixType� class SuperType�

class prefixFun � public SuperType �

public�

void fun	
 � PrefixType��fun	
� �

��

Figure ����� Adding a type pre�x to direct a the fun�� method call speci�cally to or
around another component�

class Stooges� � public Larry �empty� ���

class Stooges� � public Mo �Stooges�� ���

class Stooges� � public PrefixFun�Stooges��Stooges�� ���

class Stooges � public Curly �Stooges�� ���

Figure ����� Composition of Pre�xFun in the Stooges class to direct the fun�� call
around Mo�

Type pre�xing need not be limited to special translation components� Any com�

ponent that uses a method or variable name that is likely to encounter name clashes

can include a type pre�x in its own implementation� In our own experience	 because

of our use of proxies as described below	 we often repeat the use of the handle name�

Type pre�xing might	 therefore	 be useful in the proxy components that try to access

a particular handle�

	���� Forward Reference

In Figs� ��� and ����	 we used forward reference to declare the ClientData class before

it was de�ned� We used the incomplete declaration of ClientData to declare pointers

to an instance of the ClientData class within components that	 when instantiated	

became ancestors of the ClientData class�

While the rules of forward class reference allow the declared class name to be used

for declaring pointers	 they do not allow a forward declaration be used to declare an

��

class Stooges��

class Stooges� � public PrefixFun�Stooges��empty� ���

class Stooges� � public Curly �Stooges�� ���

class Stooges� � public Larry �Stooges�� ���

class Stooges � public Mo �Stooges�� ���

Figure ����� Illegal composition with Pre�xFun trying to direct the fun�� call down�
ward from Curly to Larry�

instance of the incomplete class� Including a forward declared class requires knowing

how much space it needs� In the use of ClientData	 above	 creating an instance of

ClientData instead of a pointer to one	 evaluating its size would produce an in�nite

recursion�

At least in C��	 we cannot use the incomplete class for type pre�xing	 either�

This is unfortunate	 since it would be convenient if we could use type pre�xing to

direct a call to a more derived class� Consider again the example of Larry	 Mo	 and

Curly	 but this time composed in the order	 Curly	 Larry	 and Mo� Now the call from

Curly to Larry has to move in the opposite direction of inheritance	 to its immediate

subclass� If we could use type pre�xing with a forward declaration to make the fun��

call simply use an o�set into its subclass	 we would use a composition as shown in

Fig� �����

	���� Dynamically Bound Methods

Dynamic binding is usually used to bind method calls to methods de�ned in subclasses

�down calls�� For the Stooges example	 in Fig� ����	 we could replace the Pre�xFun

component with a VirtualFun component that declares fun�� as a virtual method�

But in the Curly	 Larry	 and Mo composition where both Larry and Mo de�ne a

method called fun	 the dynamic binding results in the call from Curly being bound

to the most derived de�nition of fun	 which is the method de�ned in Mo� We can

��

get to the method de�ned in Larry by putting a Pre�xFun component in the most

derived position	 after Mo	 with its type pre�x bound to the Larry �stooges�� class�

But that composition then makes every call intended for the fun�� de�ned in Mo

need to use a type pre�x at the initial calling site�strategically placing additional

copies of Pre�xFun won
t help� With a preprocessor that allows easy renaming	 such

accidental name clashes would not be a problem� We would just rename one of the

uses� But	 for our style of programming with C�� templates	 we prefer to avoid this

problem by implementing the down calls with implicit invocation	 described later in

Section ������

��� Idioms for Control Flow

The semantics of an application depends on the runtime �ow of control� Depending

on the concern	 the �ow may or may not follow an application
s static structure� The

idioms in this section allow the control �ow to be addressed independently of the

application structure� Through the placement of components	 setting of propagation

parameters	 and initialization of pointers	 the developer can exert a wide degree of

control over behavior within objects	 and of the application as whole� The use of

these idioms provides a compositional alternative to writing �wiring� code to connect

the behaviors in an application�

Our approach o�ers an alternative to the tradeo� between distributed and central�

ized control over �ow of execution� Distributed control allows the decision to be made

using local information� Normally	 distributed control is encoded in each component

responsible for a behavior� Changing the execution order would require editing mul�

tiple components� Centralized control allows the developer to take an overall view

in determining the order of execution� Centralized control is normally implemented

as a separate dispatcher that calls each component in turn� Local information is

not available to the dispatcher and each execution step potentially adds overhead by

��

making a complete round trip through the dispatcher� Our approach guides the �ow

of control by ordering components in the composition	 and setting parameters that

determine whether components respond before or after propagating an event� There

is no tradeo� between global view and local knowledge� Using the idioms described

in this section	 the order can be set when specifying the composition	 when the global

picture is available� The components that propagate control are local and can include

local decision making�

	���� Implicit Invocation

Implicit invocation is a general approach to managing control �ow at runtime ����� In

implicit invocation	 an announcer component o�ers to forward a particular method

call to any listener component that expresses an interest� A listener component ex�

presses its interest by registering a callback function with the announcer component�

When the method call is made on the announcer component	 the announcer calls each

of the registered callback functions	 in turn� We use implicit invocation to handle calls

that otherwise violate compile time visibility rules	 like the down call described above	

and also for �exible inter�object event propagation� The C�� callback implementa�

tion of announcer and listener components for a resize event was shown in Fig� ��� in

the previous chapter�

The listener can register itself with an announcer in the same object by using an

anonymous constructor to invoke the register method� The announcer component	 ap�

pearing earlier in the inheritance hierarchy	 will be called �rst� When its constructor

is called	 the announcer initializes its callback list and is ready to take callback regis�

trations� When the listener
s constructor is called	 the listener calls the announcer
s

register method in its inherited interface� The announcer then registers that listener�

No additional code is needed to establish the connection for the down call�

A listener can also register itself with an announcer in another object if it performs

the registration through a handle to that object� The use of handles is described with

��

template�class RealType� class SuperType�

class ResizeAnnouncerProxy � public SuperType �

RealType� handle�

public�

void init	RealType� hndl
 � handle � hndl� �

void registerResize	ResizeCallback callback� void� obj
 �

handle�registerResize	callback�obj
� �

void unregisterResize	ResizeCallback callback� void� obj
 �

handle�unregisterResize	callback�obj
� �

��

Figure ����� Proxy component for the ResizeAnnouncer component de�ned in Fig� ����

proxies	 below� In this case	 the registration cannot occur until after the handle has

been initialized with the pointer to the other object� The correct sequence of initial�

ization involves an init�� function to set up the pointers	 followed by an initialize��

function for initializations that use the pointers� Control �ow in initialization is also

discussed in a separate section below�

	���� Proxies and Handles

A proxy is a component that stands in for another component by providing the same

interface as the other component and forwarding calls to that other component ����

To a client	 the proxy looks like the real component� In our compositional style	

proxies are most often used as local stand�ins for components of remote objects�

Figure ���� shows an implementation of a proxy for the ResizeAnnouncer de�ned

in Fig� ���� The handle variable is a pointer to the object that contains the real

announcer� The ResizeAnnouncerProxy allows clients to make local calls within its

object to registerResize�� and unregisterResize�� while the actual callback registration

occurs in another object�

Proxies hide the details of the application
s structure from the main implementa�

tion components� In the implementation of a role	 all calls are local� In the composi�

��

tion	 some of the calls are bound to methods in the same object and some of the calls

are bound to proxy methods for forwarding to other objects� To the client	 it makes

no di�erence� The application could be a single object implemented by stacking all

the roles in one long list	 or widely distributed with one role per object� Externalizing

the details of the structure allows role components to be used in di�erent structures

without modi�cation�

Proxies transform structure into a matter of composition� The developer creates

much of the application
s structure by adding handles and proxies to the compositions

of objects� Handles de�ne the structure	 while proxies de�ne the interaction�

Proxies hide the method of access between objects� A proxy can call the real

method through the name of a contained object	 through a pointer to a separate

object	 or through a socket connection to an object in a separate process� Access

mechanisms can be implemented in a component separate from the proxy	 as shown

in Fig� ����� By separating the handle from the proxy	 several proxies that all forward

to the same object can share the same handle� The template for the Handle component

is extremely general and is used repeatedly for all handles to all objects�

Proxies can control access to the original object by revealing only part of the

real component
s interface� The ResizeAnnounceProxy component in Fig� ����	 for

example	 did not include the resize�� method de�ned by the real ResizeAnnounce

component shown in Fig� ���� The resize�� method triggers the announcement and is

not meant to be called by the listener� If a component accesses another object only

through a proxy	 it can only call the methods forwarded by the proxy�

Proxies can forward calls through other proxies� Just as role components don
t

need to know whether they are calling proxies or real components	 proxies don
t

need to know	 either� As an example of where this might be useful	 consider an

image display application that draws graphical annotations on the images in the

display� The image renderer accesses the display window through a window proxy�

The annotation component also access the display window through a proxy� By

��

template�class HandleType� class SuperType�

class Handle � public SuperType �

HandleType� handle�

protected�

Handle	
 � handle	NULL
 ��

void setHandle	HandleType� h
 � handle � h� �

HandleType� getHandle	
 � return handle� �

��

template�class SuperType�

class ResizeAnnouncerProxy � public SuperType �

public�

void registerResize	ResizeCallback callback� void� obj
 �

getHandle	
�registerResize	callback�obj
� �

void unregisterResize	ResizeCallback callback� void� obj
 �

getHandle	
�unregisterResize	callback�obj
� �

��

Figure ����� ResizeAnnouncer proxy component with the handle management imple�
mented in a separate component�

��

pointing the annotations
 window proxy at the image renderer
s proxy instead of

directly at the window object	 we can guarantee that the annotations will always be

drawn in the same window with the image	 even when the image moves to another

window� We don
t need code in the annotation components to keep track if the image

has moved� This version of the proxy idiom might be described as the I
ll�have�

whatever�that�guy
s�having idiom�

Yet another advantage of using proxies is that it allows calls between objects to

be intercepted	 as described above	 in the context of the caller or in the context of

the callee� To intercept the call on the calling side	 we simply place the intercepting

component between the calling component and the proxy for that method�

	���� Pre
 and Post
 Event Propagation

When breaking large concerns into smaller subconcerns	 we often end up with groups

of behaviors that all must respond to the same event� For example	 in a graphical

user interface the response to a window being resized may be broken into separate

pieces addressing window geometry	 the sizes of bu�ers	 coordinate transformations	

and various pieces of window decoration� Some responses may be constrained to occur

before or after other responses� For example a decoration cannot be regenerated until

the bu�er that holds it has been resized and the coordinate transform that it uses

has been recomputed� Rather than write central control methods that �nd and call

each of the pieces in turn	 we can propagate the event through the composition as a

method call and allow di�erent components to respond as the event passes by�

Propagating a method requires each responding component to pass the same

method call on to its inherited interface� If the resize event generates a resize�w	h�

call	 then each responding component must also include a SuperType��resize�w	h� call

in its resize method� In most cases the resize method will call its SuperType either

before or after performing its own response	 although in some cases it may perform

part of the response before and part of it afterwards� The problem with implementing

�

template�int resizeSEQ� class SuperType�

class ResizeBuffer � public SuperType �

public�

void resize	int w� int h
 �

�� propagate first for a postresize response

if	 resizeSEQ � �
 SuperType��resize	w�h
�

�� perform local resize response

resizeBuffer	w�h
�

�� propagate last for a preresize response

if	 resizeSEQ � �
 SuperType��resize	w�h
�

�

��

Figure ���� Template with parameterized conditional code to control before	 after
or no propagation of resize event�

the resize�� function when a component is written is that it is hard to know whether

it should respond before or after propagating the event	 without knowing the rest of

the composition�

Ordering the composition to accommodate the resize function is not reasonable	

since there may be other propagated events among the same components	 such as

mouseMoved�� or init��	 with di�erent orders of response� Instead we let the de�

veloper set the �avor of propagation for each method �pre or post� at composition

time	 using conditional code and a template constant parameter� A simpli�ed res�

ize component with a constant expression parameter and conditional propagation is

shown in Fig� ����

The constant conditional is also not ideal� The SuperType class must imple�

ment a resize�� method	 even if no propagation �constant � �� is selected� We put

empty methods with appropriate signatures for commonly propagated methods in

the default base component to resolve the issue� A separate preprocessor with condi�

tional code	 such as Bassett
s Frames ���	 would avoid this problem� A good compiler

should optimize away the branch on constant overhead	 in any case� If the language
s

��

template mechanism did not support conditional code	 we might alternatively have

implemented duplicate components for each of the three �avors of propagation�

	���� Initialization

In our approach to development	 roles can use any of three mechanisms for handling

initialization� a constructor with no arguments	 an initializationmethod with no argu�

ments	 and an initialization method with arguments� Each mechanism is appropriate

to speci�c situations�

Initialization that does not require any values to be passed in	 and has only limited

interaction with components of the same object	 may de�ne a constructor that takes

no arguments �an anonymous constructor�� Anonymous constructors are commonly

used to NULL the initial values of pointers� We used NULLing constructors for the

Handle component in Fig� ����	 and the Node components in several of the earlier

examples� In the discussion of implicit invocation	 we also described using anonym�

ous constructors to establish the connection between the listener component and an

announcer in the same object�

Initialization that requires a value to be passed in is implemented with an init��

method� If an object has more than one such method	 then we may create separate

initialization component to provide a single init�� method for the group of them� The

initialization component
s init�� method takes arguments for all of the other init��

methods	 and then calls them in an acceptable order with the right arguments�

Handles	 as used in the proxy idiom	 are the most common components need�

ing initialization with arguments� We generalized handle initialization by creating a

family of constructors for di�erent numbers of handles� The code for the two handle

example is shown in Fig� ����

Initializations that need to be sequenced with other initializations within the same

object can be handled in either of two ways� They can de�ne an init�� function	 as

above	 and leave it to a central init�� function to call it at the right time� Alternat�

��

template�class Pointer�Type� class Handle�Type�

class Pointer�Type� class Handle�Type�

class SuperType�

class TwoHandleConstruct � public SuperType �

public�

void TwoHandleConstruct	Pointer�Type� ptr�� Pointer�Type� ptr�
 �

Handle�Type��setHandle	�ptr�
�

Handle�Type��setHandle	�ptr�
�

�

��

Figure ���� Template for an initializer component to initialize two handle compon�
ents�

ively	 they can de�ne an initialize�� function	 and handle their own sequencing� An

initialize�� function takes no arguments	 and calls initialize�� on its inherited inter�

face	 as we described for the pre and post execution idiom above� With the initialize��

method	 a component performs its own local initialization behavior before calling the

inherited initialize�� or afterwards	 or may perform parts of its initialization both

before and after� For example	 a component that implements a bu�er to store the

contents of a window may call initialize�� on its base class and then call the base class

to �nd out what size window it created� In another use of initialize��	 a component

can de�ne both init�� and initialize�� methods� After calling the init�� methods with

arguments	 the application calls initialize��	 giving components a chance to perform

parts of the initialization in a second pass�

In the Implicit Invocation idiom	 we described using anonymous constructors to

establish the connection between the listener and announcer in the same object�

However	 if the listener and announcer are not in the same object	 and the listener

uses an announcer proxy to forward the register call to the announcer object	 the

proxy
s handle would not yet have been initialized when the listener
s constructor is

invoked� The listener should	 instead	 use an initialize�� function	 since we call the

��

initialize�� functions after passing values	 like the handle pointer	 to init�� functions�

Because of the dependencies it creates on an object
s composition	 we do not use

argument passing among constructors� We prefer	 rather	 to address initialization

as an issue in composition� We can then manually apply various mechanisms and

components	 as described above	 to tailor the initialization to the semantics of the

situation�

��� Discussion

The idioms presented in this chapter address the separation of semantic concerns

from structural and compositional concerns� They are an important part of our role

approach to the separation of concerns	 and the corresponding compositional approach

to application construction� They provide necessary tools for the development process

presented in the next chapter�

Chapter �

THE PROCESS OF ROLE ORIENTED DEVELOPMENT

This chapter describes the steps in a development process for applying our ap�

proach in practice� The process was originally presented in an earlier paper �����

However	 due to space limitations	 only a super�cial description was given� The

description here	 by comparison	 is fairly complete and provides considerably more

detail�

The process is divided into eighteen steps	 grouped in four distinct phases� Start�

ing with a set of use case requirements	 the �rst phase models the use cases as col�

laborations of roles and addresses reuse� The second phase addresses composition

issues	 such as overlap and dependency� The third phase addresses issues of struc�

ture by adding components to make appropriate connections� The fourth and �nal

phase produces an implementation� Each of the eighteen steps addresses a single well

de�ned issue in the overall process of transforming the set of requirements use cases

into an executable program�

Figure ��� shows the abstract overview diagram for the container recycling ma�

chine� Each object is shown as an ordered composition of roles� The arrow annotations

indicate relationships between roles within a collaboration� Solid arrows represent

pointers managed by a collaboration� Dotted arrows are calls that use those pointers�

Dashed arrows are calls between roles that do not use a known pointer� A dashed

arrow represents an unresolved issue�the missing connections are addressed by step

� in the third phase�

Our two main concerns in the structure of the development process are traceability

and �exibility� The contribution of any step in the process must be traceable in any

��

CustomerPanel

Button

CustomerPanel

�

�

Printer

Printer

�

��

�

��

�

��

System

Machine

DepositReceiver

�p p p p p p p p p p p p p p p�

Head

Transaction

ReceiptBasis

ReceiptBasis

�p p p p p p p p p p p p p p p�p p p p p p p p p p p p p p p�pppppppp ppppppp
ppppppp
ppppppp
ppppppp
ppppp p p p p p p p�

p p p p p p p p p p p p p p p�

DailyTotal

DepositItem

DepositItem

���Node

CustomerTotal

InsertedItem

InsertedItem

�

��

Figure ���� Overview diagram showing the role composition of each object with an�
notations showing relationships between roles de�ned for each collaboration�

subsequent step	 and ultimately in the �nal artifact� Using this traceability	 steps can

be revisited to improve their contribution as the design evolves	 and again later	 as

changes are applied� Even in the implementation	 existing components can be further

subdivided and�or reshaped as the need arises� The steps are intentionally small and

well de�ned to facilitate this iterative and incremental process�

By comparison with other processes	 the process here is fairly complete� Other ap�

proaches commonly leave several issues for one or two steps that are left intentionally

vague� The synthesis step in the OORAM approach	 for example	 tells the developer

to take the descriptions in a set of roles and produce a single implementation that

satis�es all of them� Issues of interactions between roles	 traceability	 code reuse	 and

support for change in the implementation are left to the programmer to �gure out�

Each of out steps address a single issue with explicit methods for doing so�

The process	 as presented here	 is structured in terms of a progression of over�

lapping steps� The sequence corresponds roughly to the order in which each step is

�rst performed� But the process is not entirely linear� Any step can be revisited at

any time to improve upon its contribution to the design� Feedback is continuous �as

��

When a customer inserts a can	 bottle	 or carton into the appropriate slot	
the system collects and crushes the container	 and then increments both
a customer total and a daily total for that container type�

�a� Adding Item

When the customer presses the receipt button	 the following information
for each container type is printed on a receipt� name	 number deposited	
unit deposit value	 and total deposit value� Then the sum of the deposit
values is printed	 and the receipt is issued through the slot� Finally	 the
customer totals are cleared	 and the machine is ready for a new customer�

�b� Print Receipt

Figure ��� Initial use case requirements for the container recycling machine

opposed to discrete�	 coming from all subsequent steps in the process and applied

whenever needed� Thus it is not necessary to �get it right the �rst time� when any

step is �rst performed�

��� Phase �� De
ning Collaborations and Roles

Step �� Collect requirements use cases�

The design process begins with the use case descriptions from a requirements

analysis� The use cases can either be complete descriptions of system behaviors	 or

extension use cases describing variations on	 or extensions to	 behavior described in

other use cases� In the container recycling machine example	 as described in earlier

chapters	 the initial requirements consist of two use cases	 Adding Item and Print

Receipt� The use cases	 originally presented in Chapter 	 are shown again in Fig� ���

Step �� Identify likely objects based on entities in the problem domain�

��

To identify objects	 we begin with the common approach of looking for nouns in

the problem description� The nouns can either hold state or be the subjects that

perform actions� The intent is to start with a structure based on the entities in a

description of the problem domain that is both logical and understandable to the

client�

In the description of the Adding Item use case	 there is a customer	 an empty

container	 a set of slots	 a set of customer totals	 a set of daily totals	 and something

called the system� The block diagram for this decomposition is shown in Fig�����a��

The lines in the diagram represent structural concerns such as a call from one com�

ponent to another� A circle on the end of a line indicates that there may be more

than one instance of the adjacent component� There are separate customer totals and

daily totals for each container type� There is only one CustomerPanel	 however	 for

the three front panel slots� The customer and the containers themselves are external

to the system	 and are thus not represented�

The description of the Print Receipt use case includes a customer	 a button	 a

customer total	 a receipt	 several pieces of information for each container type includ�

ing their customer totals	 a printer slot	 something called the machine	 and a new

customer� Passively voiced expressions	 such as �is issued	� often imply the system

as the subject of the action� However	 the passively voiced expression	 �is printed	�

could imply a printer�

In choosing objects	 small items can be grouped together to yield a simpler design�

The primary criterion for selecting items to be grouped is that they can all be created

or destroyed at the same time� In a more general sense	 they should all be handled

in a similar manner and address a similar concern� In our decomposition of the Print

Receipt use case	 the DepositItem groups the three items	 name	 value	 and customer

total� These items are all speci�c to the container type and are used to create one line

on the receipt� A block diagram of the object decomposition we chose in the Print

Receipt use case is shown in Fig� ����b��

���

CustomerPanel System DailyTotald

CustomerTotal

HHHHHHHHHH d
�a�

Button Machine DepositItem

d
�
�
�
�

ReceiptPrinter

�
�

�
��

ReceiptBasis

A
A
A
AA

�b�

Figure ���� Block diagrams od initial object decomposition of Adding Item use case
�a�	 and Print Receipt use case �b��

���

In this �rst step	 no special attempt is made to de�ne structures that uniquely

address problems of the implementation language or its environment� The initial

decomposition should not be cluttered with extra objects that have no meaning in the

problem domain and may or may not be used depending on the implementation� �Is

a� relationships between object types	 as used in inheritance	 are also not considered�

Step �� Re�ne the choice of objects� taking into account commonalities across

di�erent use cases and likely sources of reuse�

In this step we want to choose objects with corresponding boundaries of granularity

across use cases� Later	 when we compose roles	 we will be matching an object as

de�ned in the collaboration of one use case with the same object as de�ned in another�

Thus we must compare the objects in di�erent use cases to make sure we have divided

the problem domain in similar ways� Many entities are well de�ned in a given problem

domain and are likely to appear in any use case decomposition� Such objects might

include account	 vendor	 machine	 order	 transaction	 receipt	 date	 employee	 etc�

But internal details of an implementation may be divided in di�erent ways	 especially

if di�erent designers work on di�erent aspects� In the previous step	 we deliberately

chose di�erent decompositions for the two use cases to highlight this type of structural

con�ict�

In the Adding Item use case	 we de�ned two separate object types for holding

information about the deposited containers� Both CustomerTotals and DailyTotals

are speci�c to container types� But CustomerTotals hold values valid only for the

current customer transaction	 while DailyTotals hold values that are used in every

customer transaction� An entity	 called the System	 manages both sets of objects� The

decomposition of Print Receipt use case	 on the other hand	 has only one object type

for container information	 called DepositItem� The DepositItem	 here	 includes both

the customer total	 which is speci�c to the current customer transaction	 and name

and value	 which are common across transactions� The Machine object correspond

to Adding Item
s System object� But the DepositItem objects are managed by a

��

separate entity	 called the ReceiptBasis�

Where two items are grouped in one use case but separated in another	 our tend�

ency is to favor the structure that is more decomposed� Thus we separate out the

part of Print Receipt
s DepositItem object type that has the customer total	 calling

it InsertedItem� For the Adding Item use case	 we separate the System role into two

roles	 with a new role	 called Transaction	 that corresponds to the ReceiptBasis role

in the Print Receipt use case� The re�ned Adding Item and Print Receipt use case

decompositions are shown in Figs� ����a� and �b�	 respectively� The use cases are

re�ned and restated to re�ect the object decompositions	 as shown in Fig� ����

In this step	 reuse can also be a factor� Suppose our company already made a

container crushing machine that did not o�er receipts� We could match the new ma�

chine
s object structure with parts of the earlier implementation to facilitate reuse�

Reuse can come from other applications	 application frameworks	 large scale compon�

ents	 and smaller components such as data structure implementations� We will have

more to say on reuse in the Step �	 where we add the linked list collaboration shown

in Fig� ����c��

Step �� Describe the detailed responsibilities and behaviors of each role in each use

case collaboration�

By this point in the process	 the designer should already have some ideas of how

the system will carry out the various functions for which it is responsible	 and	 to

some extent	 how responsibilities in di�erent use cases might �t together� Now it is

time to make responsibilities and behavioral relationships explicit� Following accepted

practices	 we use a CRC card�like approach to documenting responsibilities in each

object
s roles and scenario diagrams to document the interactions between object

roles in a collaboration ���	 ���

In the CRC �class responsibility and collaboration� card approach	 each class is

represented by an index card� As each use case scenario is considered	 the responsib�

ilities of each participating class are written on the card for that class� In our case	

���

CustomerPanel System DailyTotald

Transaction

A
A
A
AA d

CustomerTotal

�a�

Button Machine DepositItem

ReceiptPrinter

�
�

�
��

ReceiptBasis

A
A
A
AA

InsertedItem

dAA
A
AA

�b�

Head Node

���
�c�

Figure ���� Block diagrams of objects in �a� Adding Item and �b� Print Receipt use
cases after re�nement to coordinate decompositions between use cases	 and �c� objects
in separate Linked List collaboration�

���

When a customer inserts an empty beverage container into one of the
CustomerPanel slots	 the CustomerPanel signals the System that a cus�
tomer has inserted a container of a particular type� The System tells the
Transaction	 which increments a CustomerTotal of the appropriate type�
The system then increments it
s own DailyTotal for that container type�

�a� Adding Item

When the customer presses the receipt button	 the Machine requests the
ReceiptBasis to package up the information needed to print the receipt�
The ReceiptBasis in turn requests the information for each line from its
InsertedItem objects� Each InsertedItem object gets the container type
name and unit deposit value from its associated DepositItem object	 then
adds the customer total	 and computes the total deposit value� The Re�
cieptBasis formats each line and adds the sum of the deposit values at the
end� The Machine passes the formatted text to a ReceiptPrinter which
prints the receipt and issues it through the slot� The Machine then in�
structs the ReceiptBasis to clear the customer totals	 and the machine is
ready for a new customer�

�b� Print Receipt

Figure ���� Restatement of the use cases of Fig� ��	 re�ned for the object decompos�
itions shown in Figs� ����a� and �b��

���

we are not dealing with classes that span multiple use cases	 but only with roles for

a single use case�

When looking for responsibilities	 a good way to start is to look for the verbs

in the use case description� In the Adding Item use case	 for example	 the System

increments a DailyTotal count� We must also look for implied or missing behaviors

needed to �ll gaps in the scenario
s logic� How does the system know which DailyTotal

to increment� Who manages the lists of DailyTotals and CustomerTotals� We might

write on the CRC card for the System role in the Adding Item use case that it manages

the list of DailyTotals and that when signaled by the CustomerPanel	 it selects the

appropriate DailyTotal	 noti�es the Transaction of the event	 and tells the chosen

DailyTotal to increment its count�

Scenario diagrams show the messages or method calls that pass between roles

when a use case scenario is being carried out�� Communication between roles	 earlier

denoted by terms like �signal� or �command	� become method calls that appear in the

diagram as arrows with distinguishing names� Some responsibilities	 like �manage	�

are vague and must be further elaborated before being expressed in terms of method

calls�

The outputs of this step include both more re�ned descriptions of the use case

collaborations and the scenario diagrams� The new Adding Item and Print Receipt

use cases are stated in Fig� ���	 while the corresponding scenario diagrams appear in

Figs� ��� and ����

Step �� Decompose use case collaborations into smaller collaborations to manage

complexity and facilitate reuse� Decompose compound roles into smaller roles� taking

into account the possibility of change�

Use cases that can be logically de�ned as a single sequence of behavior at the

�The name� scenario diagram� comes for the terminology used in the OORAM method ����� In
OOSE� scenario diagrams are called interaction diagrams ���� The Fusion method has a similar
diagram� called a timeline diagram� to represent what it calls �use scenarios� ��	�� In the Uni�ed
Modeling Language �UML� the corresponding diagram is called a sequence diagram�

���

CustomerPanel System Transaction CustomerTotal DailyTotal
�

insert �addItem�s�

�addItem�s�

�getS��

�setS�s�

�incCount��

�incCount��

Figure ���� Interaction diagram for Adding Item collaboration�

Button Machine ReceiptBasis InsertedItem DepositItem Printer
�

press �receipt��

�getRcpt�txt�

�getDi��

�getCount��

�getName�txt�

�getVal��

�print�txt�

�reset��

Figure ���� Interaction diagram for Print Receipt collaboration�

���

When a customer inserts an empty beverage container into a slot	 the Cus�
tomerPanel sends an addItem message with the slot type to the System�
The system	 in turn	 sends an addItem message	 with the container type	
to the Transaction object� The Transaction queries the CustomerTotals
in its list to �nd the CustomerTotal for that container type� If it does not
�nd one	 it adds a new CustomerTotal object to its list� The Transaction
then commands the appropriate CustomerTotal to increment its count�
Finally	 the System tells the DailyTotal	 for the deposited container type	
to increment its count�

�a� Adding Item

When the customer presses the receipt button	 the Button object sends a
receipt message to the Machine object� The Machine sends a request to
the ReceiptBasis to prepare formatted text for the receipt� For each line	
the ReceiptBasis	 gets the total count and a pointer to the corresponding
container type
s DepositItem object� The ReceiptBasis basis then gets
the container type name and unit deposit value from the DepositItem
object� The ReceiptBasis creates the formatted text and returns it to
the Machine� The Machine passes the text to a the Printer object which
prints the receipt and issues it through the receipt slot� The Machine then
instructs the ReceiptBasis to clear the InsertedItems	 and the machine is
ready for a new customer�

�b� Print Receipt

Figure ���� Restatement of the use cases of Fig� ��	 re�ned with the responsibilities
shown in Figs� ��� and ����

���

requirements level are often composed of two or more distinctly de�nable processing

behaviors at the level of implementation� In this step	 we separate such compound

use case collaborations into two or more smaller collaborations� There are three main

reasons for decomposing use cases in this way� First	 decomposition allows complic�

ated behaviors to be de�ned in terms of smaller	 more manageable pieces� Second	

parts of the processing needed to support a requirements use case may be duplicated

in other use cases	 either within the same application or in di�erent applications�

Examples of potential duplication include basic domain frameworks	 data base and

GUI support	 design patterns	 and data structure implementations� Separating out

common collaborations supports reuse and allows each collaboration to better focus

either on what is common	 or on what is unique� Finally where the design of a use

case collaboration results from combining several decisions	 decomposing the use case

into parts speci�c to each decision facilitates later changing some of those decisions

without a�ecting others �����

In the description of the Adding Item use case from the previous step	 the Trans�

action object manages a list of CustomerTotal objects� Manage	 in this case	 means

performing traversal and insert operations on the list�� The corresponding ReceiptBa�

sis object in the Print Receipt use case traverses the corresponding list of InsertedItem

objects	 and resets the list back to an empty state� We can separate both sets of be�

haviors out to a separate Linked List data structure collaboration� The Link List
s

block structure is shown in Fig� ����c�� The implementation is handled as in the data

structure idiom described in Chapter ��

In the description of the Adding Item use case	 the System object manages a list

of DailyTotal objects� The DailyTotal list appears to be of �xed length and could be

implemented as an array� Alternatively	 we might want to allow new container types

to be added and thus implement the list with another linked list data structure� In

�Neither traversal nor insert operations appear in Fig� ��
 because no messages are passed between
objects� The getNext and insert calls� if any� occur within the Transaction object�

���

the latter case	 the Linked List data structure collaboration could be reused for both

lists�

Conceptually	 collaborations should de�ne continuous sequences of behavior among

groups of objects� Responsibility for each part of a sequence is allocated to one of

the roles in the collaboration� Together	 they are responsible for the entire sequence�

A role may forward some of the details of carrying out the work to other methods	

but it is still responsible� In this step we must be careful not to violate a chain of

responsibility when separating concerns in smaller collaborations� To see how a viol�

ation might occur	 consider the reset�� call from the Machine role to the ReceiptBasis

role in the Print Receipt collaboration as shown in Fig� ���� The purpose of this

call is to signal the ReceiptBasis to prepare for a new customer by clearing its list of

InsertedItems� When we decomposed the Print Receipt collaboration	 the details of

how to clear the list were moved to the new Linked List collaboration� In the new

Print Receipt collaboration	 the Machine role could just call the clear�� method in

the Linked List collaboration
s Head role to perform the reset function� But reset

is the responsibility of the ReceiptBasis role in the Print Receipt collaboration� The

forwarding decision should be made in the ReceiptBasis role�

In concrete terms	 a role may call other methods in its inherited interface to handle

the details of some operation	 but it may not call another object unless that call is to

a role in the same collaboration� Viewed at the level of collaborations	 control may

�ow from one collaboration to another	 and back again	 within a single object	 but

not in a call between di�erent objects in the application� In the case of the reset

operation	 the ReceiptBasis must still de�ne a reset�� method to be called by the

Machine role	 even though its implementation may simply be to call clear�� on its

inherited interface�

The rule on calls between collaborations is essential both for understandability

and for �exibility� For purposes of documenting the design	 all aspects of a concern

are de�ned	 at some level	 within a single collaboration� When trying to understand a

���

single role	 the restriction maintains the invariant that all relationships between roles

occur either within a collaboration or within an object� For purposes of �exibility	 our

model of composing collaborations assures that the join points where collaborations

interact occur only within objects� Explicit source code references to details of an

application
s structure make designs hard to change� Keeping the join points within

objects enables us to use only the implicit connection mechanisms of inheritance for

composing collaborations�

After the decompositions in this step	 we no longer use the term use case when

referring to collaborations in the design� Use cases in our discussion are speci�cally the

sequences of behavior de�ned in the requirements analysis� There is still a mapping

between collaborations and use cases	 but a use case may correspond to two or more

collaborations in the design�

Step 	� De�ne coordination� initialization and similar behaviors needed to support

the behaviors already de�ned� Re�ne existing collaborations or add new ones to include

the needed additions�

The focus in previous steps has been on system behavior corresponding directly

to the requirements� Many of these behaviors assume that the machine is in a certain

state or that certain information is available� The machine may have to take actions

not described in the original collaboration to get into that state or to make the

information available where it is needed� In this step we identify those situations and

make the needed additions to our design�

In the Print Receipt collaboration	 each DepositItem role contributes the name

and unit price for its type of beverage container� We might de�ne a behavior to read

this information from a �le at startup time�

In the Print Receipt collaboration each InsertedItem role has a pointer to a corres�

ponding DepositItem object� How does this pointer get set� When instances of the

CustomerTotal role in the Adding Item collaboration	 the DepositReceiver knows the

identity of the corresponding DailyTotal� Assuming certain roles will be composed in

���

the same objects	 we can modify the Adding Item collaboration to accommodate the

pointer expectation in the Print Receipt collaboration� In the original collaboration	

as shown in Fig� ���	 the slot id	 s	 was used as a discriminator in calls to the Trans�

action and CustomerTotal roles� In the change	 we use a DailyTotal pointer	 dt	 as

the discriminator�

The relationship between the application and its environment must also be con�

sidered in this step� System resources may need to be allocated and�or con�gured�

Inputs to the application	 in the form of event callbacks from library components

or hardware interrupts	 may require runtime registration� Some activities related to

system startup	 especially those requiring operator interaction	 will appear in the use

case addressing operator interactions�

Many use case behaviors are responses to events� But the use case itself may

not describe how the system knows when an event has occurred	 or if it does know	

how it propagates that news to the appropriate roles� Event detection may pose

a special problem if waiting for one event precludes seeing other events� In such

systems	 where each use case assumes it waits for its particular event	 we may need

to de�ne an independent event detector to wait for all events� Chapter � discusses

simple collaborations that can be used to propagate events among objects	 and also

within objects� The issue of coordinating event responses will visited again in Step

���

Step � De�ne and name the objects of the �nal application and assign each role

from each instance of a collaboration to an application object�

In this step we group roles by application object and choose a single name for each

object or object class� The discussion of join points and the shared dt pointer in the

previous two steps implied that we had some knowledge of which roles in di�erent

collaborations belong to the same object� The process of grouping roles began in Step

� with the e�ort to coordinate decompositions� Here we make the groupings explicit�

Roles should combine to form reasonable data type abstractions� Using normal

��

object oriented principles	 all the roles grouped in an object should logically associate

with the same problem domain entity� The use of common attributes is a strong indic�

ator of logical association� The CustomerTotal and InsertedItem roles	 for example	

both refer to the same count of items inserted by the customer� Similar lifetime

behaviors	 such as the time of creation and destruction	 should also be considered�

Some objects	 like the Printer in the Print receipt collaboration	 may be unique to

one collaboration	 and thus only have single role�

As with every step	 this decision can be visited again later� In fact	 as shown

in an earlier paper	 our approach provides substantial �exibility for grouping role

a�liations to try out di�erent structures of implementation �����

��� Phase �� Composing Roles Within Objects

Step �� Create a Roles�Responsibilities matrix �or matrices��

We still need more information to construct our application	 especially when trying

to compose several roles to form the class of a single object� First	 the same operation	

or attribute	 may be de�ned for more than one role� If so	 we must determine if the

duplicate operation is to be shared	 repeated	 or overridden� Depending on the results

of this analysis	 some roles may need to be further subdivided� Second	 where one

collaboration extends another	 we need to identify the calls between roles within the

same object� These may be implied	 but not shown	 in scenario diagrams� Finally	

we need to determine the order in which to compose the roles�

To aid in the process of answering these questions	 we have found the roles�respon�

sibilities matrix	 adapted from business management ����	 to be a useful tool� Fig�

ure ��� shows a roles�responsibilities matrix for the three collaborations as discussed

so far� In the matrix	 rows represent collaborations	 while columns represent objects

or their classes� The internal cells of the matrix represent roles� Names within a cell	

in italics	 are role names from the collaboration named in the left column� Names

���

Linked
List

Adding
Item

Print
Receipt

DepositReceiver

System

item�N�

addItem�s�

Machine

receipt��

ReceiptBasis

Head

list

prepend��

clear��

getHead��

getNext�n�

Transaction

addItem�dt�

ReceiptBasis

getRcpt�txt�

reset��

InsertedItem

Node

next

setNext�next�

getNext��

CustomerTotal

count

dt

setDt�dt�

getDt��

incCount��

InsertedItem

count

di

getDi��

getCount��

DepositItem

DailyTotal

count

incCount��

DepositItem

name

val

getName�txt�

getVal��

Printer

Printer

print�txt�

Figure ���� Roles�responsibilities matrix for part of the recycling machine design�

followed by parentheses are method names� Names without parenthesis are attribute

variable names�

Each role in the matrix is labeled with its name and contains both methods and

attributes needed by the role in its collaborations� For each role we collect its methods

from the scenario diagrams	 as in Figs� ��� and ���	 and its attributes by determining

which attributes the methods use�

Where one collaboration depends on another	 we must take into account any

calls or accesses within an object that might not appear in a scenario diagram� The

Transaction role from the Adding Item collaboration	 for example	 uses methods of

the Head role in the Linked List collaboration to �nd and add CustomerTotals� These

methods are included in the Head role description in the ReceiptBasis column�

���

Step �� Identify and resolve duplication among roles assigned to the same object�

Di�erent collaborations often refer to the same state variables	 and may also share

certain sub�operations� In Step � we addressed a shared sub�concern	 for a Linked

List	 that could be expressed as its own collaboration� In this step we address overlap	

or sharing	 that occurs within the context of a single object�

Using the roles�responsibilities matrix	 for each column we look at each vari�

able or method to determine whether it might be duplicated in another role of the

same object� Consider	 for example	 the InsertedItem column in Fig� ���� Both the

CustomerTotal and InsertedItem roles de�ne a count variable� In their respective

collaborations	 both count variables represent the number the beverage containers

inserted during a customer transaction�they are the same� Similarly	 consider the

di and dt variables� These variables both point at a DepositItem object� We added

the dt variable to the DailyTotal role in step � to initialize the pointer value used

in Print Receipt
s InsertedItem role� Between the CustomerTotal and Inserted Item

roles	 both the count and di�dt values are shared�

One approach to overlap would be to create a new role to handle the shared part�

For the overlap in the InsertedItem object	 we might create a role called IiData to

manage the two shared variables	 as shown in Fig� �����a�� The new role would be part

of both collaborations� With the addition of an IiData role	 both the Adding Item

and Print Receipt collaborations would have two roles assigned to the InsertedItem

object�IiData just happens to be the same role in both collaborations�

Another approach to the overlap is to eliminate the duplicated variables in one

of the roles and make it dependent on the other role to provide those values� Our

preference is to assign variables to roles where they are set	 and remove them from

roles that only read them� Semantically	 the Print Receipt
s use of the count and

di variables requires them to have been set by the Adding Item collaboration� So

it is logical to make them syntactically dependent as well� We eliminate the two

variables from the InsertedItem role and make the implementations of the getDi�� and

���

InsertedItem

Node

next

setNext�next�

getNext��

CustomerTotal

setDt�dt�

getDt��

incCount��

IiData

count

di

InsertedItem

getDi��

getCount��

from Adding Item

collaboration

from Print Receipt

collaboration

�a�

InsertedItem

Node

next

setNext�next�

getNext��

CustomerTotal

count

dt

setDt�dt�

getDt��

incCount��

InsertedItem

getDi��

getCount��

�b�

Figure ����� Two alternative strategies to address the overlap between the Customer�
Total and InsertedItem roles�

���

getCount�� methods refer to variables �or other accessor functions� de�ned elsewhere

in the same object� This second approach is shown in Fig� �����b��

Why did we create a getDi�� method when we could just call getDt��� Consider

the two methods� Each is an accessor function for the dt�di variable�both methods

perform the same operation� However	 unlike the shared count and di variables in the

previous discussion	 the two methods are called from other objects in their collabora�

tions� They are also called using di�erent names� In addressing this sharing	 we must

be careful to maintain the consistency of the original collaborations�we cannot just

remove one of the duplicate methods� If we put a common method in a shared role	

such as the IiData role	 we must also change one of the names used to call either the

getDi�� or getDt�� method� We chose	 instead	 leave the two methods in place and

address the sharing in the implementation of one or both of the methods�

Step ��� Identify dependencies among roles within objects and establish partial

orderings for composing roles�

In the implementation of a role	 calls to methods in other roles within the same

object appear as calls on the inherited interface� When roles are composed	 the meth�

ods being called will be part of the inherited interface only if the roles that implement

those methods are included earlier in the composition� Interface dependencies impose

constraints on the order of composition� In this step we determine which orderings

can satisfy the dependency constraints by annotating the columns from the roles��

responsibilities matrix with information about the dependencies among roles� Later	

we will also consider additional information relevant to the grouping of roles with

acceptable orderings�

Figure ���� shows the annotated column for the ReceiptBasis object� The intra�

object dependencies are represented by a modi�ed version of the scenario diagram�

The standard scenario diagram uses one line per object and labels the arrows with

names of the methods being called� In our modi�ed version	 we turn the diagram

�� degrees	 use one line per method or attribute being accessed and don
t label the

���

ReceiptBasis

Head

list � Node

prepend�� � Node

clear��

getHead��

getNext�n� � Node

Transaction

Sy � addItem�dt�

�

�

�

� CT�DT

ReceiptBasis

Ma � getRcpt�txt�

�

�

� II�DI

Ma � reset��

�

Figure ����� Annotated column for the ReceiptBasis object�

arrows�� The additional annotations on the left and right in the �gure list the calls

to and from roles in other objects of the application� This information will be used

later to put the objects together and to de�ne proxy components to handle some of

the calls�

Assuming that the roles in the column appear in the top to bottom order in

which they will be composed	 all arrows in the �gure should be pointed upward� As it

happens in Fig� ����	 this is already the case� Thus a composition with �rst Head	 then

Transaction	 then ReceiptBasis would work for resolving the dependencies between

roles� Since there are no dependencies between the Transaction and ReceiptBasis

roles	 a composition ordering of Head	 then ReceiptBasis	 then Transaction would

also work�

Accesses from a method in one role to an attribute in another role are treated the

�For purposes of �nding orderings� the standard form of the scenario diagram� with one line per
role� would also work� We chose the alternative form to �t the details of the matrix� save space�
and avoid writing vertically�

���

same as method calls between roles	 with a box for the attribute and an arrow leading

to it from the box of the method� An example of this situation appears with the count

and di variables in Fig� ����a�� It is	 however	 generally good practice to provide

protected access methods for attributes that may be accessed from other roles� With

access methods	 all inter�role dependencies appear as method calls	 allowing separate

name translation �e�g� getDt�� versus getDi��� and access forwarding� In the common

case of simple accesses	 the extra overhead can be inlined away by the compiler�

In the annotated column diagram	 virtual �dynamically bound� calls require spe�

cial handling� The dependency arrow should be drawn from the specialized method

to the method that it overrides� Even though the call actually travels in the opposite

direction �from the base class to the subclass�	 the direction of the arrow indicates

that the specialization is required to appear later in the hierarchy than the method

it overrides�

Circular dependencies pose a special problem� When two roles depend on each

other	 either directly or transitively through other roles	 no simple ordering can resolve

all inter�role dependencies� For this situation	 additional components can be used to

forward calls in the opposite direction through either implicit invocation or dynamic

binding� As described in Chapter �	 when a call appears earlier in the hierarchy than

the method it calls	 an announcer for that call is placed earlier in the hierarchy than

the role with the call �above	 in top to bottom order� with a corresponding listener

placed later than the role that de�nes the method �below	 in top to bottom order��

The implicit invocation components are treated as additional roles in the composition�

As in the case of the ReceiptBasis object	 it is often the case that several di�erent

orderings can achieve the desired bindings� This retained �exibility can be used to

address issues considered in the remaining steps�

Step ��� Resolve name mismatches by coordinating names or adding translation

components�

Up to this point we have either ignored naming issues or assumed that we could

���

change names as needed to make references within and between collaborations match

up� But it is not always possible or desirable to unify the names of every method

and attribute� We may wish to reuse components from other existing applications

for which the code has already been implemented� Where di�erent collaborations

represent di�erent views	 each collaborations may be easier to understand if expressed

in terminology speci�c to the concern of its particular view� By using translation

components	 we can allow calls made with a particular name in one role to be bound

to methods de�ned with a di�erent name in another role� Argument translation is

also possible�

In the previous discussion of the di�dt pointer used by both the CustomerTotal

and InsertedItem roles	 the CustomerTotal role de�ned a getDt�� method while the

InsertedItem role had a getDi�� method� We could implement the getDi�� function

to access something called dt	 as indicated in Fig� ����a�� Alternatively	 without

changing or mixing names in the implementations of either collaboration	 we could

implement getDi�� as forwarding a getDi�� call to its inherited interface� We then

put a translation layer between the InsertedItem and DailyTotal roles that takes

the getDi�� call and forwards it to a getDt�� method� This solution is shown in

Fig� ����b�� Figure ����b� also shows the access from getCount�� in InsertedItem

to count in DailyTotal changed to use an access method in DailyTotal� As mentioned

above	 a good compiler can optimize away the intermediate method calls in this

solution�

When composing components with independent naming schemes	 there is also a

risk that two components use the same name to mean di�erent things� What if the

Transaction role in Fig� ���� de�ned a method called clear��� In a composition of

�rst Head	 then Transaction	 then ReceiptBasis	 the call from reset�� to the clear��

method in the Head role would be bound to the wrong method� The problem can be

resolved with the alternative Head	 then ReceiptBasis	 then Transaction ordering� In

more di�cult cases	 type�pre�xed calls or intermediate translation layers	 as described

��

InsertedItem

Node

next �No

He � setNext�next�

He � getNext��

CustomerTotal

count

dt �DT

Tr � getDt��

Tr � setDt�dt�

Tr � incCount��

InsertedItem

RB � getDi��

�

RB � getCount��

�

�a�

InsertedItem

Node
�Nonext

He � setNext�next�

He � getNext��

CustomerTotal

count

dt �DT

Tr � setDt�dt�

Tr � getDt��

Tr � incCount��

getCount��

TranslateIiCt

getDi��

�

InsertedItem

RB � getDi��

�

RB � getCount��

�

�b�

Figure ���� Two alternative approaches to addressing name di�erences between the
CustomerTotal and InsertedItem role components�

��

in Chapter �	 can be used to jump over the interfering usage�

In the container recycling machine example there is both a CustomerTotal count

and a DailyTotal count� In our design	 we placed the two roles in separate objects�

Thus	 in this design	 there is no issue in using the same name for both attributes� But

in some other design	 we might try to compose the CustomerTotal and DailyTotal roles

in one object� This could create a name clash between the two components� Because

we use static binding	 the two uses of the same name remain distinct�� Methods

within each role would see their own version� However	 calls or accesses from outside

the two roles could see either� In the �nal implementation	 we would have to make

sure the correct calls and instances are bound�

��� Phase �� Connection Between Objects and Other Structural Issues�

Step ��� Add proxies and handles�

Now that we have addressed the connections within objects	 we must address the

connections between objects� To visualize the broader issues involved	 we will start

with a diagram that combines much of our earlier understanding in a single view� In

Fig� ���	 the role composition of each of the objects is presented as an ordered stack

of boxes� Relationships between objects appear as arrows of various types connecting

speci�c roles�

In our earlier discussion	 certain roles manage associations with other roles� Where

one role manages a pointer to	 or contains the object of	 another role	 we draw a solid

arrow from the managing role to the object of the role being referenced� The Machine

role in the Adding Item collaboration has an array or list of DailyTotals �called item

in Fig� ����� Each CustomerTotal role has a dt pointer that points to a corresponding

DailyTotal� In the Linked List collaboration	 the Head role points to a Node role	

while each Node has a pointer to another Node�

�Allowing the same name to mean di�erent things within the same object requires name scope
control� Some languages do not support such control in conjunction with dynamic binding�

�

Where one role calls methods in a role of another object we draw a dotted or

dashed arrow� Calls between objects occur strictly within collaborations and can be

found by looking at the scenario diagram for each collaboration� Calls that follow

one of the solid lines can be implemented by calling the method on that pointer or

object and are drawn as a dotted arrow� The getVal�� and getName�� calls between

the ReceiptBasis and DepositItem in Fig� ��� use the InsertedItem
s pointer returned

by the getDi�� call and are thus also represented by a dotted arrow�

Calls that have no corresponding solid arrow are shown by a dashed arrow� These

calls typically involve static relationships between objects that are not addressed in the

functional description of any use case or collaboration� These are the calls that must

be addressed in this step� In a normal application	 we would simply add a suitable

pointer or containment relationship to the client role� But such references make

the implementation of the client dependent on structural details of the surrounding

application� Instead	 we introduce proxy components to manage the relationships

independent of the roles in the collaboration�

Figure ���� shows the composition of the DepositReceiver object without proxies	

�a�	 and with proxies added	 �b�� A proxy is a component that provides in its interface

the calls of another role	 while internally forwarding each call to that other role� To

other role components	 a proxy looks just like the role for which it is a proxy� Proxies

are easy to implement and can	 in fact	 be generated from the interface description of a

role� As discussed in Chapter �	 proxies o�er other bene�ts such as access control and

access through distributed object protocols� The underlined annotations on the right

in Fig� ���� represent pointers to roles or other reference	 while the non�underlined

annotations represent calls to methods in other roles�

Proxies commonly use a pointer to the object of the other role� Often	 several

proxies forward their calls to the same object and can use the same pointer� We

separate out the pointer parts of proxies and implement them in a separate Handle

component� Since all handles have the same interface	 modulo the pointer type	 we

��

DepositReceiver

Machine

item�N� �DT

CP � addItem�s� �DT�Tr

System
�Bu receipt�� �RB�Pr

�a�

DepositReceiver

TransactionProxy

addItem�dt� �Tr

Machine

item�N� �DT
�CP addItem�s�

�

�DT

PrinterProxy

print�txt� �Pr

ReceiptBasisProxy

getRcpt�txt� �RB

reset�� �RB

System
�Bu receipt��

�

�

�

�b�

Figure ����� �a� The initial con�guration of the DepositReceiver object with roles
from the original collaborations� �b� The DepositReceiver object after the addition
of proxy components�

��

need only implement one handle template for the entire application�

Figure ���� shows the completed structure of the DepositReceiver object including

proxies and their corresponding handles	 and a constructor component to initialize the

pointers in the two handles when the object is created� The position of the Printer

and ReceiptBasis proxies was reversed from Fig� �����b� to allow the ReceiptBasis

proxy to share the handle of the Transaction proxy�

The overview diagram in Fig� ���� shows the complete structures of all of the

object types� In this view	 all inter�object calls have managed pointers to provide the

corresponding connections	 and can thus be drawn as dotted arrows� Note also that

the solid arrows have been moved down to indicate that the pointers will be declared

with the complete types of the objects they point to�

Step ��� Identify common classes and de�ne class hierarchies�

Through most of the discussion	 little attention has been paid to the issue of class

or class structure� In our source code implementation	 the units of commonality are

roles and not classes� But in the compiled image of the implementation	 classes are

the units of sharing	 and not roles� To reduce the size of the compiled image	 we

would like	 as much as possible	 to identify common classes among the objects and to

structure the application as a hierarchy of base classes with specializing subclasses�

An object
s class is synonymous with its implementation� The implementation of

objects in our application is de�ned by the composition of its roles� We can identify

objects with the potential for sharing the same class by looking for objects that have

the same roles� If two objects have the same roles composed in the same order	 then

they have the same class� If they have the same roles	 but not in the same order	 then

they do not have the same class�

Before implementation	 we look for objects that have the same role pre�xes com�

posed in the same order� These common pre�xes can be shared as common classes�

We also look for objects that have the same role pre�xes but not in the same order�

Going back to the ordering activity of Step ��	 we try to reorder either or both of the

��

DepositReceiver

Handle

handle �Tr�RB

setHandle�h�

getHandle��

TransactionProxy

addItem�dt�

�

�Tr

Machine

item�N� �DT
�CP addItem�s�

�

�DT

ReceiptBasisProxy

getRcpt�txt�

�

�RB

reset��

�

�RB

Handle

handle �Pr

setHandle�h�

getHandle��

PrinterProxy

print�txt�

�

�Pr

System
�Bu receipt��

�

�

�

Construct�Handle
�main init�h��h��

�

�

Figure ����� The completed form of the DepositReceiver object with three proxies
for the inter�object calls between roles	 two handles to connect the proxies to other
objects	 and a constructor to initialize the two handles�

��

Handle

SystemProxy

CustomerPanel

MachineProxy

Button

EventLoop

Construct�Handle

CustomerPanel

�

� �

p p p p p p p p p p p p p p p�
p p p p pppppppppp p p p p p p p p p p p�

Printer

Printer

�

��

p p p p ppp p p p p�

�

��

p p p p p p p pp�

p p pp p p�

Handle

TransactionProxy

System

ReceiptBasisProxy

Handle

PrinterProxy

Machine

Construct�Handle

DepositReceiver

�
��

p p p p p p p p p p p p p p p�

Head

Transaction

ReceiptBasis

ReceiptBasis

�

� �

p p p p p p p p p p p p p p p�p p p p p p p p p p p p p p p�pppppppp ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppp p p p p p p p�

p p p p p p p p pppp p p p p p p p�

DailyTotal

DepositItem

DepositItem

�

��

Node

CustomerTotal

TranslateIiCt

InsertedItem

InsertedItem

�

��

Figure ����� Overview diagram showing the complete role composition of each object
and the relationships as implemented with the addition of proxy	 handle	 and translate
components�

��

objects to share a common class� Often we may be able to match the compositions

up to a point	 say	 the �rst � roles� We make that portion of each object a common

base class	 and	 from there	 create separate subclasses for the di�erent objects�

Finally	 we look for objects that have a similar composition	 but where one object

has additional roles not found in the other� Here	 we look to see if we can add the

missing roles to the smaller object without a�ecting its behavior in other words	 if

the additional role can be present but not used�

In the design of the container recycling machine	 there is no commonality among

the six objects� Had we created di�erent objects for each of the three container types	

either for the InsertedItems or the DepositItems	 the commonalities would have been

readily apparent� We could then have structured the container speci�c objects with

their unique aspects last� We may yet make distinct subclasses to address future

requirements�

Step ��� Disambiguate names and note issues requiring special attention to types�

Because types are bound at compile time	 every role can use the complete object

type of every object	 other than its own	 with which it interacts� This was shown

graphically in Fig� ����	 where each solid arrow points at the bottommost role of the

object to which it points�

Where the same method or attribute name is used in more than one role in the

same object	 we may not wish to access the most derived use of that name� In this

case	 may want a particular pointer to use the type of an intermediate class in the

object composition� This must be noted so that the pointer
s type can be bound to

the correct type name when its template is instantiated�

Type names may also be useful within objects� Although we tried to address name

ambiguities within objects by adjusting the order of composition in Step ��	 we may

still have cases where we need to use type pre�xing to disambiguate among names�

In the ConstructHandle component shown in Fig� ����	 two di�erent setHandle��

methods are called� Ordering is not of use here� Cases of this type must be noted

��

so that pre�xes are included when the role template is written and correctly bound

whenever the template is instantiated�

Step ��� Add object and role initialization� and adjust other response sequences�

When performing a number of initializations	 it is often the case that certain

things must be initialized before others� In the application discussed in Chapter �	

for example	 a �le could not be loaded until the bu�er where it was stored had

been initialized� Other events	 besides initialization	 may also involve interdependent

sequences of response� In systems with graphical user interfaces where mouse move	

key press	 and window resize events are common	 responses in di�erent collaborations

may have to be coordinated�

The sequencing of behavior with pre� and post�response parameters was discussed

in Chapter �� The use of those parameters	 and the appropriate bindings for each role

instance	 should be addressed in this step� Our three�phase protocol for initialization	

also described in Chapter �	 should be tailored in this step	 as well�

For simple event responses	 the �ow of control can be drawn by hand on an over�

view diagram	 or	 within objects	 on the annotated object columns� More complicated

sequences within and among objects may use formal representations like �nite state

machines or petri nets	 as shown by Aliee and Warboys ���

��� Phase �� Implementation

Step �	� Implement roles�

The design is now complete� We can proceed to implement any roles that have

not already been implemented� Role implementation	 using C�� templates	 was de�

scribed in Chapter �� Each role is implemented as a class template with a SuperType

parameter for its base class� Each reference to the type of any other object is also

replaced by a parameter� Calls to other roles are implemented simply as calls on the

SuperType interface	 where they will be bound either to methods de�ned in other

��

roles in the same object	 or	 through proxies	 to roles de�ned in other objects�

Step �� Compose roles� objects and classes�

Once the roles have been implemented	 or even before	 we elaborate the lists of

template bindings and instantiations to create the classes of the application� Com�

position speci�cation was also discussed in Chapter �� The �rst role forms a base

class by binding its SuperType parameter to a default empty class and is instantiated

in a class with the su�x number �� Each role appearing next in the composition is

bound to the prior class name by binding its template
s SuperType parameter to that

name	 and is then instantiated in a class with a su�x number that is one greater�

Common classes	 forming base classes in the class hierarchy as discussed in Step ��	

may be given more distinguishing names and their specializations may continue with

di�erent names and a su�x numbering again starting with one�

Many role templates will have more type parameters than just the SuperType� In

most cases these will refer to the type of another object in the application� However	

in some cases	 as noted in Step ��	 these must be bound to an intermediate type

names of its own	 or some other object� Forward reference of type names can be used	

but within the same constraints applying to normal uses of forward reference �e�g�

non�recursive space computation��

Step ��� Write initialization calls and main�

If all the speci�cation of use cases and collaborations are complete	 and initializ�

ation is correctly handled	 the only task remaining should be to implement a main��

function for the application�� The main�� function de�nes a series of object declara�

tions to instantiate the top level objects	 calls init�� with appropriate arguments	 and

initialize�� for objects needing initialization	 and then calls a starting method in one

of the objects� The main subroutine for the Container Recycling Machine example is

shown in Fig������

�In the case of distributed applications� there may be multiple main�� functions for each autonom�
ous part�

���

int main	
 �

�� instantiate top level objects

Printer printer�

ReceiptBasis receipt�basis�

DepositReceiver deposit�receiver�

CustomerPanel customer�panel�

�� call initialization methods

deposit�receiver�init	printer� receipt�basis
�

customer�panel�init	deposit�receiver
�

�� call method with outermost event loop

customer�panel�run	
�

�

Figure ����� The main subroutine for the Container Recycling Machine application�

��� Analysis

Compared to other development processes	 the process presented here may seem to

have many steps� In part this may be attributed to the steps being narrowly focused on

one issue per step� But	 in comparison with other similar processes	 such as OORAM

or OOSE	 our process also has steps for many concerns that aren
t addressed in the

other methods� The description of the development process in the book on OOSE	

for example	 covers steps one	 two	 four	 and seven ���� In the book on the OORAM

approach	 the development process covers steps one through �ve and step seven�

The remaining issues are left unaddressed	 to be resolved in implementation� Other

methods which jump from requirements to classes typically cover only steps one	 two

and thirteen�

The process provides traceability in all artifacts� The requirements map to collab�

oration to their roles	 to collaborations and roles	 with auxiliary composition compon�

ents	 and �nally to components in the implementation� All �ve of our diagramming

models related directly to both the implementation and the requirements�

The �nal concrete overview diagram	 shown in Fig� ����	 contains many extra

���

components compared with the original collaborations for the two use cases� But the

diagram can be viewed as an extension of the abstract overview diagram shown in

Fig� ���� With tool support	 the extra detail could be elided and made visible only

when needed	 or perhaps grouped by use case with color coding�

The focus throughout most of the process is on objects	 and more speci�cally	 on

roles within objects� The issue of class and class hierarchy does not appear until late

in the process� The roles themselves are implemented in a way that does not commit

them to a particular class structure� Thus the design of a class structure is almost an

orthogonal activity�

The design and implementation in our approach can still be viewed in terms of

classes and class structure� Our overview diagrams	 minus some detail	 and with in�

heritance relationships explicitly shown	 correspond to class diagrams in other meth�

odologies�

Reuse was introduced in the third step of our process	 long before any decisions

about implementation or class structure had been made� This early concern for reuse

allows the design to be adapted to available artifacts more easily than other methods

that try to match class de�nitions late in the design with code available in libraries�

Also our decomposition around smaller concerns	 and the direct implementation in

components	 makes it easier to reuse the resulting collaborations in other applications�

Generalization is an integral part of our process rather than an afterthought to support

reuse�

Chapter �

THE PROCESS OF ROLE ORIENTED CHANGE

To change an application we go through the same steps that we used in develop�

ment� For many of the steps we only consider the parts that are new� However	 in

some of the steps we may reconsider decisions made during the initial development�

In this chapter we describe the process of change� To illustrate the discussion we

apply the Validate Item use case	 as described in Chapter � Later	 we will also apply

the Item Stuck use case�

Our compositional approach stresses adding new behavior by adding new com�

ponents� We want to maximize the reuse of existing components which have already

been veri�ed and validated in the existing application� When it becomes necessary

to upgrade or subdivide existing components	 wherever possible	 changes to original

components should be tested in the context of the original application before using

them together with new collaborations in the new application�

	�� Adding the Validate Item Use Case

Step �� Collect requirements use cases�

The Validate Item use case is an extension use case that provides a deviation from

the behavior described in the earlier Adding Item use case to address the problem of

verifying that the inserted container was valid for returning a deposit� We restate the

use case from Chapter in Fig� ����

Step �� Identify likely objects based on entities in the problem domain�

The block structure of our initial decomposition is shown in Fig� ��� The In�

���

When a container is inserted	 the system measures its dimensions and
reads its bar code� The measurements and bar code are used to determine
if the container should be accepted for a deposit refund� If it is not ac�
cepted	 no totals are incremented	 and a NOT VALID sign is highlighted�
The user must then remove the container before inserting another� If the
container is valid	 the system collects the container and continues as per
the Adding Item use case�

Figure ���� The Validate Item use case�

Inspector ValidCheck Validatord

NotValid

�
�

�
��

Figure ��� Initial role decomposition of the Validate Item use case�

spector measures the containers and reads their bar codes	 the Validator checks the

measurements against those of valid containers	 and the NotValid signals the customer

that a container is not valid�

Step �� Re�ne the choice of objects� taking into account commonalities across

di�erent use cases and likely sources of reuse�

Since the Validate Item use case is an extension to the Adding Item use case	

we need to coordinate its role decomposition with the existing structure used by

the Adding Item collaboration� The Adding Item collaboration had a System role to

coordinate activities� Input comes from the CustomerPanel role	 while the DailyTotal

role keeps information speci�c each container type� We can structure the Validate

Item roles in the same way� The CustomerPanel object	 where the slots are located in

Adding Item	 can take on the responsibility for measurements made by the slots� Since

���

Inspector
ValidCheck Validatord

NotValid

Figure ���� Roles in the Validate Item use case arranged to �t objects of existing
application�

the CustomerPanel is the only entity with a customer interaction	 it can also take

on the new customer interaction by providing the NOT VALID warning� Because

measuring containers and displaying a warning are logically di�erent activities	 we

could have added a separate object for the NotValid role� Since Adding Item
s System

role already manages the array of DepositItems	 we let the ValidCheck role share

that part of its coordination responsibility with the System role� By placing it in the

DepositReceiver object	 the ValidCheck role can also pass control on to the addItem��

method within the same object� The re�ned block diagram	 arranged to �t the

CustomerPanel	 DepositReceiver	 and DepositItem objects	 is shown in Fig� ����

Step �� Describe the detailed responsibilities and behaviors of each object role in

each use case collaboration�

In this step we create a description of the use case collaboration using speci�c

role and method names	 and draw the corresponding interaction diagram� For the

Validate Item use case	 the description of its collaboration is shown in Fig� ����

The interaction diagram for both sequence alternatives is shown in Fig� ���� We

use arrows that loop back on the same object to show the beginning and end of the

extension use case
s deviation from its base use case� In this case	 the addItem�s� call

from the CustomerPanel to the System in the Adding Item use case is intercepted by

the Inspector role and resumed in the ValidCheck role�

Step 	� De�ne initialization and similar behaviors needed to support the behaviors

already de�ned� Re�ne existing collaborations or add new ones to include the needed

���

When a customer inserts an empty beverage container into a slot	 the In�
spector measures the container and reads its bar code� The Inspector calls
the ValidCheck
s addItem method with the measurements	 bar code	 and
slot type as arguments� The ValidCheck calls the corresponding Validator
object
s isValid method and passes the dimensions and bar code to check if
they are valid� If the Validator object responds that the container is valid	
the ValidCheck signals the Inspector
s feed method to collect the container
and then passes control to the System addItem method from the Adding
Item base case� If the Validator object responds that the dimensions are
not valid	 the ValidCheck calls the NotValid
s notValid method and takes
no further action� The NotValid then lights the NOT VALID sign and
waits for the customer to remove the container by polling the Inspector
s
isClear method� When the customer removes the container	 the NotValid
object turns o� the NOT VALID sign	 and processing resumes�

Figure ���� The re�ned Validate Item use case�

Inspector
addItem�s���� addItem�s�l�w�c��

NotValid

isClear���

ValidCheck

validate�l�w�c��
notValid���

Validator

addItem�s���� addItem�s�l�w�c�� validate�l�w�c��
feed��� ���

addItem�s�

Figure ���� Interaction diagram for two alternative sequences of the Validate Item
collaboration� Looped arrows indicate intra�object calls to or from another collabor�
ation�

���

additions�

In the earlier discussion of this step	 the Print Receipt
s DepositItem roles needed

to be initialized with the names and values of each container type� In the Validate

Item collaboration	 a similar issue exists for the Validator role where we need to

initialize the criteria for validating items	 e�g� the dimensions of valid items of that

type� Again to simplify discussion	 we ignore the initialization components needed

for this task�

Step �� Create a Roles�Responsibilities matrix �or matrices��

As in development	 work on de�ning compositions for a change starts with a

roles�responsibilities matrix� Here we reuse the roles�responsibilities matrix created

in development and simply add	 or replace	 rows for the new collaborations	 and add

or remove columns to new or omitted objects�

Figure ��� shows the matrix for the container recycling machine as implemented

in the previous chapter	 with an added row for the Validate Item collaboration� The

Printer column has been omitted	 while the CustomerPanel column	 not shown in

Fig� ���	 is included� The EventLoop role was added in Step � of development to

address the system
s interaction with it
s environment� Some other roles di�er slightly

from the matrix presented in Fig� ��� of the previous chapter due to re�nements

applied in later steps of the development process�

Step �� Identify and resolve duplication among roles assigned to the same object�

New roles may introduce new duplications that must be addressed as in the de�

velopment process� The Validate Item collaboration begins with the detection of an

inserted container in the CustomerPanel object and ends either with the container

being removed in the notValid�� method or with a continuation of the addItem��

process in the DepositReceiver object� None of the roles	 in this case	 overlap with

responsibilities in roles of other collaborations�

Step ��� Identify dependencies among roles within classes and establish partial

orderings for composing roles�

���

Event
Loop

Linked
List

Adding
Item

Print
Receipt

Validate
Item

Customer�
Panel

EventLoop

run��

Cust�Panel

insert��

Button

press��

Inspector

addItem�s�

feed��

isClear��

NotValid

notValid��

DepositReceiver

System

item�N�

addItem�s�

Machine

receipt��

ValidCheck

addItem�s�w�h�c�

ReceiptBasis

Head

list

prepend��

clear��

getHead��

getNext�n�

Transaction

addItem�dt�

ReceiptBasis

getRcpt�txt�

reset��

InsertedItem

Node

next

setNext�next�

getNext��

CustomerTotal

count�dt

setDt�dt�

getDt��

incCount��

getCount��

InsertedItem

getDi��

getCount��

DepositItem

DailyTotal

count

incCount��

DepositItem

name�val

getName�txt�

getVal��

Validator

l�w

validate�l�w�c�

Figure ���� Roles�responsibilities matrix for the recycling machine with the Validate
Item collaboration added�

���

Roles to apply change are very likely to use and interact with roles from the

existing application� Most of the work in applying a change involves the problem of

incorporating these new relationships into the existing application� Our strategy for

inserting a new behavior is to intercept a call between roles in the original application�

After the new behavior has been performed	 the original sequence can be resumed

by calling the originally intercepted method	 partially overridden by calling a method

later in the sequence	 or aborted by simply returning from the intercepted call�

To add the Validate Item use case to the container recycling machine	 we want

to intercept the addItem�� call from the Adding Item collaboration
s CustomerPanel

role to its System role� We could intercept it by adding a new addItem�� method to

the DepositReceiver object in a more derived position than the System role� However	

taking advantage of the fact that calls to other objects go �rst to a proxy component	

we will instead intercept the call within the CustomerPanel object� This will allow

us to read the measurements from the container slot before passing control to the

DepositReceiver object� The composition of the original CustomerPanel object	 be�

fore applying any changes	 is shown in Fig� ���� The method intercept is performed

by de�ning an addItem�s� method in the Inspector role and placing it between the

CustomerPanel role and the SystemProxy component� The completed composition

of the CustomerPanel object	 with the two role components for the Validate Item

collaboration and the proxy de�ned in Step �	 below	 is shown in Fig� ����

Step ��� Resolve name mismatches by coordinating names or adding translation

components� Examine name clashes and decide what action� if any� is needed�

As in the development process	 there may be name clashes or mismatches between

the new roles and the existing roles with which they are composed� In the case of

the Validate Item collaboration	 the implementation is written speci�cally for the

existing container recycling machine implementation	 so we can choose names that

�t without translation� We de�ned two addItem�� methods	 using the same name

as the addItem�� method in the System role� In the case of the Inspector role	 as

���

CustomerPanel

Handle

handle � Sy�Ma

setHandle�h�

getHandle��

SystemProxy

addItem�s�

�

� Sy

CustomerPanel

insert��

�

MachineProxy

receipt��

�

�Ma

Button

press��

�

EventLoop

main � run��

�

�

Init�Handle

main � init�h��

�

Figure ���� The original form of the CustomerPanel object before inserting roles for
the Validate Item use case�

���

CustomerPanel

Handle

handle � Sy�Ma�CV

setHandle�h�

getHandle��

ValidCheckProxy

addItem�s�w�h�c�

�

�VS

SystemProxy

addItem�s�

�

� Sy

Inspector

addItem�s�

�

�

feed��CV �

isClear��

NotValid

CV � notValid��

�

CustomerPanel

insert��

�

MachineProxy

receipt��

�

�Ma

Button

press��

�

EventLoop

main � run��

�

�

Init�Handle

main � init�h��

�

Figure ���� The complete composition of the CustomerPanel object after adding three
new components for the Validate Item collaboration�

���

described in the previous step	 this was intentional� The addItem method in the

ValidCheck role	 with additional arguments	 was given the same name to indicate its

close association with the original� The language should disambiguate the two based

on their signature� If this was not the case	 the situation would be noted for special

attention in Step ���

Step ��� Add proxies and handles�

We apply the same process used in development to the roles in any new col�

laborations to de�ne and insert proxy components� Figure ��� showed the use of a

ValidCheck proxy in the CustomerPanel object�

Step ��� Identify common classes and de�ne class hierarchies

In this step we must revisit our earlier choices of class sharing to see if they are

still valid in light of the new object compositions� Specializations may have been

applied to some of the objects that shared class implementations	 and not the others�

We can again apply the same types of permutations as in development to try and

maximize class sharing� In of our example of applying the Validate Item change	 the

level of available sharing is unchanged from before�

Step ��� Disambiguate names and note issues requiring special attention to types�

In this step we look at the repeated use of names and apply any adaptive measures

that might be needed� In the case of change	 we look at names that are used in new

components	 but also names that are used in existing components whose position

has changed relative to each other� Usage includes both names that are de�ned	 and

names that are called or accessed�

Step ��� Add object and role initialization�

As discussed in development	 initialization requires special attention� Because

we have added new components to the mix	 and may have rearranged the order of

existing components	 we must revisit the initialization design to make sure it all works

correctly�

The original recycling machine design did not have ordering issues for the little

��

initialization that is done� With the addition of the Validate Item components there

are still no ordering issues to be addressed�

Step �	� Implement roles�

If all the arrangements work out	 we will only have to implement components

for roles in the new collaborations and new helpers for translation or initialization�

For the Validate Item collaboration	 we implement only the code speci�c to the four

Validate Item roles and their proxies� All of the existing components are reused as is�

Step �� Compose roles� objects and classes�

The original speci�cation of composition is edited to add in the new components

and apply any rearrangements that may have been made� For the Validate Item

addition	 we added a number of components to various positions in the composition

of three classes� However	 the order of composition among the existing components

did not change�

Step ��� Write initialization calls and main�

We add declarations for new top level objects to our earlier version of the main��

function� We also must add or change code for new or altered initialization calls�

For the new version of the container recycling machine with item validation	 no new

objects were created� We did	 however	 add a handle pointer in the DepositReceiver to

point at the CustomerPanel object� The only change needed for the main�� function

is to add one argument to the deposit receiver�init�� call�

	�� The Item Stuck extension

Part of the original challenge was to apply two changes in succession� In this section

we discuss applying the Item Stuck use case� Since we have already discussed the

steps in the process	 we will just describe the highlights of the change�

The initial decomposition of the Item Stuck use case has three roles	 a CheckStuck

role that decides when to check for stuck containers	 a FeedStatus role that can tell

���

After signaling the CustomerPanel to collect the container but before in�
crementing any counts	 the CheckStuck asks the FeedStatus if the item
has become stuck� If the item is not stuck	 the CheckStuck continues as
before� If the item is stuck	 the CheckStuck signals the Alarm to sound its
alarm� The Alarm then waits	 polling the FeedStatus until the jammed
item has been removed� The CheckStuck then returns without increment�
ing any counts	 and awaits new input�

Figure ���� The Item Stuck use case	 as re�ned�

whether or not the container is stuck	 and an Alarm role that signals a problem

and waits for it to be cleared� When re�ned to �t the existing object structure	 the

FeedStatus and Alarm roles are both assigned to the CustomerPanel object� The

re�ned description is shown in Fig� ����

The roles�responsibilities matrix	 with Item Stuck
s roles and methods added	 ap�

pears in Fig� ����� In adding the Item Stuck behavior	 we will intercept the call within

the DepositReceiver	 from the ValidCheck component to the addItem�s� method in

the System component� The overview of the entire composition with all changes and

all proxies is shown in Fig� �����

	�� Discussion

The OOSE book emphasized choosing new objects when adding a new use case to

an existing application� Because our unit of reuse is the role	 we do not hesitate to

assign new responsibilities to existing objects� In fact	 we encourage it�

The process of change follows the same steps as the process of development� In

most of the steps we were only concerned with new parts� Adding the two new use

cases to the container recycling machine posed no special problems� The design that

resulted from both changes had the same structure as the original application� It had

no features that would indicate that it was the product of an initial application with

���

Event
Loop

Linked
List

Adding
Item

Print
Receipt

Validate
Item

Item

Stuck

Customer�
Panel

EventLoop

run��

Cust�Panel

insert��

Button

press��

Inspector

addItem�s�

feed��

isClear��

NotValid

notValid��

FeedStatus

isStuck��

Alarm

alarm��

DepositReceiver

System

item�N�

addItem�s�

Machine

receipt��

ValidCheck

addItem�s�w�h�c�

CheckStuck

addItem�s�

ReceiptBasis

Head

list

prepend��

clear��

getHead��

getNext�n�

Transaction

addItem�dt�

ReceiptBasis

getRcpt�txt�

reset��

InsertedItem

Node

next

setNext�next�

getNext��

CustomerTotal

count�dt

setDt�dt�

getDt��

incCount��

getCount��

InsertedItem

getDi��

getCount��

DepositItem

DailyTotal

count

incCount��

DepositItem

name�val

getName�txt�

getVal��

Validator

l�w

validate�l�w�c�

Figure ����� Roles�responsibilities matrix the recycling machine with the Item Stuck
collaboration added�

���

Handle

SystemProxy

ValidCheckProxy

Inspector

NotValid

FeedStatus

Alarm

CustomerPanel

MachineProxy

Button

EventLoop

Construct�Handle

CustomerPanel

�

� �

Printer

Printer

�

��

�

��

�

��

Handle

TransactionProxy

System

ReceiptBasisProxy

Handle

PrinterProxy

Machine

Handle

AlarmProxy

FeedCheckProxy

CheckStuck

NotValidProxy

InspectorProxy

ValidCheck

Construct	Handle

DepositReceiver

�

��

Head

Transaction

ReceiptBasis

ReceiptBasis

�

� �

DailyTotal

DepositItem

Validation

DepositItem

�

��

Node

CustomerTotal

TranslateIiCt

InsertedItem

InsertedItem

�

��

Figure ����� Overview diagram of the complete application with both the Validate
Item and Item Stuck changes added�

���

subsequent changes applied�

Chapter 	

EXPERIENCE DEVELOPING A MEDIUM SIZED

APPLICATION

To explore the feasibility of using our approach on a non�toy example	 we de�

veloped a new implementation of an existing	 medium sized application with which

the author was already familiar� In this chapter we describe some of our experiences

in carrying out that development�

The application discussed in this chapter motivated the initial investigations that

lead to this work� It is a good example of the need for this kind of approach� Thus we

describe a little more of its history and context than otherwise might be necessary�

We discuss our experiences and some analysis of that experience in the latter part

of the chapter� We conclude with an analysis of a few small experiments involving

change�

The hypothesis to be tested was that the development approach could be used to

develop a program of signi�cant size	 in its entirety� We were curious to know if there

would be bottlenecks or show stoppers in the evolutionary approach to development	

or the compositional approach to implementation� Could we handle composition and

control �ow in objects with tens of role components in an object rather than �ve

or six� What kind of growth in complexity would we experience in an application

upwards of a hundred components� We also wanted to get a sense of the kinds of

idioms that would be needed and the relative importance among idioms� Finally	

we were interested in the properties of the resulting artifacts�the design	 the source

code	 and the executable program�

���

The development was carried out by the author over the course of ten months	

interspersed with other activities� As the approach is anything but mature	 no e�ort

was made to compare the time and e�ort involved with other development methods�

Much of the time was	 in fact	 spent testing di�erent idioms and re�ning details of

the method� We were	 however	 interested in the quality of the implementation and

how it di�ered from other implementations of the same application� The author had

developed two earlier implementations and is familiar with several more�

�� Description

����� Scalar Images and Pseudocolor Display

The application that we implemented displays scalar images on a pseudocolor display�

Scalar images are images for which the pixel information of interest is intensity rather

than color� With only one the intensity value for each per pixel	 scalar images typically

contain less information than color images� The issue for the pseudocolor display is

to maximize our ability to perceive what little information the image contains� When

looking at a monochrome display	 like a black and white television	 the human eye

can reliably distinguish only six or seven levels of intensity� If we displayed our scalar

image in monochrome	 we would only see a small amount of the information available

in the pixel intensities� By mapping pixel intensities to colors�say low values to blue	

middle values to red	 and high values to yellow or white�the eye can discern a far

greater number of distinct levels�

����� Astronomy

The particular images that our application is intended to display come from astro�

nomy� At night	 when we look up at the sky	 most stars look pretty much the same�

But their intensities are actually very di�erent	 and many of them are not even stars�

With powerful telescopes and sensitive detectors	 astronomers take pictures of the

���

night sky	 collecting light from stars and galaxies	 and also the background radiation�

stray photons coming from seemingly random directions� There is a lot of information

in those images	 but it is hard to extract�

One of the problems astronomers face in looking at their images is discerning faint

objects from the background radiation� Another is comparing how a star
s brightness

compares with that of its neighbors� Of particular interest is �nding objects whose

brightness	 relative to their neighbors	 changes over time� In nebula	 light is given o�

or absorbed by particles of dust forming massive clouds� There is a lot of structure

in the dust	 but at a much lower level of intensity than the stars that shine through

it�

Our application helps astronomers bring out the detail and subtle �shading� in�

formation in their images� It reads in digitized scalar data from an image �le	 rescales

it to the number of colors in the display hardware color lookup table	 and displays it

on the screen� The user then plays with the colors in the lookup table to bring out

the details of interest�

����� Intensity Scaling

There are two levels of intensity manipulation in the process of rendering an image�

The �rst manipulation rescales the range of intensity values present in the data down

to the range of values in the color lookup table� This process is sometimes called

binning because we assign intensity values from the data to one of the two hundred

or so bins corresponding to a cell in the color lookup table� The scaling is not always

linear� An astronomer may want to highlight di�erences within the closely grouped

values of the cosmic dust rather than among the much more spread out values of the

stars�

The second level of intensity manipulation is the assignment of colors to cells in

the color lookup table� In this case the astronomer chooses a sequence of colors to

maximize conceptual distances around the features of interest without cluttering the

���

image with a lot of color noise for features of less interest�

����� Auxiliary Displays

The user may want to pinpoint a speci�c pixel and take precise measurements from the

image� But at the same time	 they may need to view a large enough area to provide

meaningful context� To enhance spatial acuity	 the application provides a second

window showing a magni�ed image of the area immediately around the cursor� It can

also print the current cursor coordinates o� in a corner�

If a user is not displaying the entire image in the main display window	 they may

want to know what part of the overall image they are looking at� A third window

displays a small picture of the entire image and indicates the area of the main display

by outlining it with a rectangle drawn as a graphic�

Because colors can be arbitrarily assigned in the color lookup table	 the user needs

to know the relative levels of intensity represented by di�erent colors� To provide

this information	 the application provides a colorbar in which an arti�cial image of

uniformly increasing value is colored by the same lookup table as the other images�

����� Overall Description

From the descriptions above	 we see that the application includes a main display

window	 three smaller display windows for the magni�er and navigator	 and a narrow

colorbar� It may also have an area for printing the cursor coordinates	 although this

could be printed on the image itself�

The implementation has a number of challenges for coordinating di�erent activ�

ities� The magni�er needs to track the mouse� The navigator needs to know the

coordinates of the image being displayed in the main window� All three renderings

from the image data should use the same scaling information� The application needs

to behave reasonably when a window is resized� Di�erent parts need to respond in

unison	 although they may view relationships through di�erent coordinate systems�

���

The relationships themselves may apply to only parts of images or parts of display

windows	 e�g� when several di�erent images are �mosaic
d� into a single window�

In a full application	 there are numerous other features that would be needed to

enhance its usability�including menus	 popup windows	 and additional controls to

select new images and manipulate things like the color lookup table� However	 once

we had implemented the main functionality we did not wish to spend additional time

polishing an application that is not intended for release�

�� History

The author �rst encountered the scalar image display application in ��� while work�

ing at the Smithsonian Astrophysical Observatory� At the time he was assigned to

upgrade a heavily used implementation written in assembly and a derivative of Forth�

The application was speci�c to a particular piece of display hardware attached to a

time�shared Data General mini�computer� Forth has an elegant stack semantics	 but

the syntax required far more comments than code to be rendered understandable�

The program was small enough to be attacked	 en mass	 and by the time the upgrade

was complete	 eight months later	 very few lines of code were untouched�

In ����	 the author was lured back to the Smithsonian with the assignment to write

�the best image display program in astronomy�� By that time	 many astronomers were

moving to workstations� Many of them were using a display program called Imtool

that had just been written by the IRAF group at the National Optical Astrophysical

Observatories �NOAO�� But Imtool was speci�c to the IRAF environment and not

general enough for widespread use�

We began by trying to extend Imtool� But we soon discovered that it was too

dependent on the IRAF environment� There were IRAF speci�c assumptions distrib�

uted throughout the code� At the same time	 the Suntools library was ine�cient and

made it di�cult to customize parts of the user interaction for our application�

��

The new implementation	 called SAOimage	 was written in C for the then new

X window system and used the Xlib library of user interface calls� SAOimage was

based on a display program written by Bill Wyatt and included on the �rst X��

distribution tape� The user interface for SAOimage was developed by a collaboration

of Eric Mandel	 Richard Berg	 and the author�

Largely due to its innovative user interface	 SAOimage achieved widespread ac�

ceptance almost immediately upon its release ���� It was used as a model in the

development of the X�� toolkit	 and is now part of the GNU distribution� Although

written ten years ago	 it is still in use by hundreds of astronomers around the world

and a smattering of researchers in other �elds	 such as microbiology and physics� It

was used by researchers at the Space Telescope Science Institute to view the �rst

images returned from the Hubble Space Telescope after its initial deployment and

after the optical corrections were installed� Even though several other good display

programs with other features have been written since the design of SAOimage	 many

users are reluctant to switch because of their attachment to the SAOimage interface�

The success of SAOimage depended on our being able to develop in an incremental

fashion	 and to test alternatives in working con�gurations� Although our immediate

users requested features from systems they were already using	 we wanted to develop

an application that took advantage of new technology to do things in ways that had

never been done before� We also had become believers in user testing of interfaces�

For earlier systems	 we had written what we thought were ideal interfaces� But many

users found them quirky� Imtool	 also	 has what is obviously Doug Tody
s ideal

interface�

Building alternative con�gurations proved to be a lot of work and progress was

always slow� As features were added	 SAOimage required several major restructurings

to support further evolution� Design documentation	 such as it was	 fell way behind�

The last major restructuring accompanied the port to X��	 when a new window

manager standard required the various menus and display windows to coordinate

���

their placement and geometry in a di�erent way�

By the time of the X�� port	 the author had discovered that several groups in other

locations were building their own extensions on top of SAOimage and were unwilling

to adopt new versions after the restructuring�� Years later	 some groups were still

running X�� on their workstations in order to support their version of SAOimage�

Simple renamings	 intended to improve clarity	 brought numerous complaints� The

menu preprocessor	 which had been created to support extension by others	 was never

used by anyone other than the author because its documentation was never up to date�

Over the years we have received a lot of mail requesting changes to support new

uses and changing technology� Some changes are small	 others not� Most requested

changes seem reasonable	 even desirable� But in almost all cases	 the answer is the

same� No	 at this point it
s too hard to change�

The design of SAOimage is based on a functional decomposition� The source code

�les are organized by concerns �e�g� �le reading	 window management	 color�� Within

the �les the concerns are subdivided into numerous functions� The functions pass or

cache intermediate state in large data structures that are passed from one function

to the next	 but ultimately belong to main��� As predicted by Parnas	 changing any

of those data structures a�ects a large number of functions �����

But it is not clear that an object oriented design would fare that much better�

NOAO replaced Imtool with a new implementation	 called ximtool	 that has a nicely

written object based design �though certainly not optimal�� ximtool is designed to

function as a widget in Tcl and has interchangeable shape objects for drawing graph�

ics� But the main display object in ximtool is implemented in a �le with ����� lines

of code� The high level design is quite logical	 but the code within the main object is

hard to understand and not much easier to change than the earlier implementation�

The problem with creating a nice object design for the image display application

�Two groups added a feature by replacing an existing one rather than trying to add something
new� while Fermi Lab� on a big budget� has done their own major restructuring�

���

is that there is no one hierarchy that can logically structure all the concerns down

to small objects� An object composition based on display windows is logical	 and

virtually required by widget oriented high level languages like Tcl�Tk or Visual Ba�

sic� But the relationships for image rendering	 the sharing of coordinate systems	

mouse tracking	 and the response to window resizing	 all follow di�erent structures�

The ximtool implementation hides the crossed couplings in a single ����� line object

module�

The approach we wanted to test with the new implementation is to address each

concern in a separate collaboration	 and then compose roles from di�erent collabora�

tions to create objects�

�� The Work

The development of the new application was not meant as a controlled experiment�

Observations were to be qualitative	 rather than quantitative� The developer had

already the experience of developing earlier forms of the application	 using common

approaches	 and was thus familiar with the conceptual problems that it posed� The

new approach was still being developed	 and thus much of the e�ort was directed at

exploring and improving the method of development� Many of the idioms described

in Chapter � were developed while working with this application�

The work was carried out	 on a part time basis	 over the course of ten months�

The one developer was a programmer with ten years of professional experience in a

procedural languages and �ve years of experience in object oriented development in

an academic setting�

The requirements were made up of �fteen use cases	 most of which were known

at the outset� Examples of some of them include display window	 create colorbar	

render image	 and propagate resize events� The requirements use cases were re�ned	

and in some cases subdivided	 as the work progressed�

���

The �nal application required about ���� lines of code� The �nal design had

eleven objects	 implemented with �� instances of ��� di�erent role components� The

components were grouped to form �� classes in � separate hierarchies� The �nal

collection of components includes �� additional components	 and ��� lines of code	

for features that were tested but aren
t being used and components used for debugging

purposes�

An overview of the application is shown in Fig� ���� A listing of the main �le with

the composition lists and initialization code appears in the appendix� The navigator

window and its renderer is omitted in Fig� ��� for lack of space� �� component

instances appear in the �gure� Because many of the components are hierarchically

de�ned in terms of smaller components	 only �� of the ��� di�erent component types

appear in the top level �gure�

�� The Experience

Our experience with developing the application contrasted sharply with our earlier

experiences in application development� At the surface	 the main di�erence was that

we were doing role analyses and writing little templates in the code� But at a deeper

level	 we found that the new approach changed the sequence of development and

the way we thought about the design� Although	 ultimately	 the design is an object

oriented design with �� classes in � hierarchies	 we would not have arrived at this

particular design had we used a more conventional approach	 going from the analysis

to the design of classes�

The work proceeded in an incremental fashion	 building the application by adding

one concern at a time� At each step	 the concern was re�ned in terms of its collab�

oration and a source code template for each role was implemented� Because of the

autonomous nature of collaborations and their roles	 there was no reason not to imple�

ment the roles once they had been speci�ed� This allowed us to explore the handling

���

Transform2D

SrcBufferProxyZone

ProxyHandle

ScaleMapProxy

ProxyHandle

BufferZoneResize

DstBufferProxyZone

TwoHandleConstruct

RendererResize<post>

Render

ResizeAnnounce<post>

ResizeListenProxy

XImageProxy

MouseAnnounce

MouseTransform

MouseListenProxy

KeyPressAnnounce

KeyPressListenProxy

Magnified View Renderer

ShellConstruct

XAction

PseudocolorResize<pre>

ResizeEvent

XWindow

XGC

Pseudocolor

ColorPreference

HardColorCopy

HardColor

XVisual

XColor

XShell

Application Shell

ProxyHandle

FileRead<FITS>

BufferProxy

FileConstruct

ScaleMapProxy

ProxyHandle

Buffer

OneHandleConstruct

Image Buffer

Image File

ViewportConstruct

ResizeEvent

XImage

ImageResize<post>

Colorbar

ColorbarResize<post>

KeyPressEvent

KeyPressAnnounce

MouseEvent

MouseAnnounce

ResizeAnnounce<post>ResizeAnnounce<post>

ScaleMapProxy

ProxyHandle

DstBufferProxyZone

ResizeListenProxy

SrcBufferProxyZone

ProxyHandle

BufferZoneResize

ScaleMapRole

Render

RenderResize<post>

TwoHandleConstruct

Transform2D

PseudocolorProxy

XImageProxy

MouseAnnounce

MouseTransform

MouseListenProxy

KeyPressAnnounce

KeyPressListenProxy

Main View Renderer

XWindow

XVisualProxy

XGCProxy

PseudocolorProxy

ProxyHandle

BufferResize<post>

Buffer

MouseAnnounce

ResizeAnnounce<post>

KeyPressAnnounce

MouseEvent

KeyPressEvent

XImage

ImageResize<post>

ResizeEvent

ViewportConstruct

Magnifier Viewport

BufferResize<post>

XGCProxy

Buffer

PseudocolorProxy

XVisualProxy

ProxyHandle

XWindow

Colorbar

XWindow

XVisualProxy

XGCProxy

PseudocolorProxy

ProxyHandle

BufferResize<post>

Buffer

MouseAnnounce

KeyPressAnnounce

MouseEvent

KeyPressEvent

XImage

ImageResize<post>

ResizeEvent

ViewportConstruct

Main Viewport

RenderProxy

MagnifyMouse

ResizeListenProxy

KeyPressListenProxy

ProxyHandle

MouseListenProxy

ThreeHandleConstruct

MouseListenProxy<pre>

ProxyHandle

Magnifier

ProxyHandle

Figure ���� Overview of one con�guration

���

of each concern and test it with running code	 before committing to a particular

strategy in the design� This horizontal approach contrasts with the vertical waterfall

approach proceeding from requirements to a complete design	 before implementing

the code�

As we had expected	 the order of evolution of the image display application did not

at all follow the order of inheritance in the class compositions� Added features tended

to go in the middle of the class hierarchy where they interact with existing features

in a natural order� The more derived roles in each composition tended to be roles for

event detection and object initialization� The code could not have been implemented

in this way had we been forced to order the inheritance to support evolution�

The relationships between collaborations allowed us to work at intermediate levels

of abstraction� The di�erence can be seen in how we implemented the magni�er� The

magni�er tracks the mouse in an image display window and displays the area of the

image around the mouse	 magni�ed� In earlier versions	 the magni�er addressed many

low level concerns from interpreting low level mouse events to packaging the magni�ed

image and sending it to the screen�

In the new abstraction	 the magni�er knows nothing about windows	 image hand�

ling	 or being a magni�er� It simply tracks the mouse across the image and requests a

rendering at a particular scale centered on that position� To provide the abstraction

of the mouse moving across the image instead of a window	 we inserted mouse track�

ing components in the image Renderer object	 including a MouseListener to get the

events from MouseAnnouce component in the window	 and an adjacent MouseTrans�

late component to translate the window coordinates to image coordinates� Another

MouseAnnounce component makes the mouse move events available as events from

the Renderer�

The abstraction of the magni�er collaboration has three roles� MouseEvent	 Mag�

nifyMouse	 and Display� We added a keyboard interaction	 with a KeyPressEvent

role	 to allow the user to change magni�cations� Instead of implementing a whole

���

new magni�er module ����� lines in the earlier implementation�	 we wrote only a

�� line magni�er role	 most of which is code for the keyboard menu� Components

for mouse tracking and rendering already existed	 having been developed in other

collaborations� Because the existing instances of rendering and tracking are integral

parts of dissimilar objects	 we would not have been able to reuse the code in a more

traditional approach�

The Magni�er implementation also demonstrates the �exibility inherent in our

approach� We could place the Magni�er in either the source or destination Renderer

object�Main View Renderer and Magni�ed View Renderer	 respectively	 in Fig�����

We chose	 in this case	 to create a separate Magni�er object to allowing us to track

mouse events in any renderer �two are supported here� and ask any renderer to display

the magni�ed image� The Magni�er is connected to roles implemented in other com�

ponents through proxy components�its implementation does not depend on which

of the three alternative designs is chosen� The earlier implementations could not o�er

this degree of �exibility�

Using collaboration views and role components led us to maintain an entity struc�

ture	 even when implementation concerns might have dictated otherwise� If we look

at a calls graph for this application	 we will probably �nd more calls between the

Renderer and its Viewport	 than among roles within the Viewport� But the abstrac�

tion is better served by their separation� Within each collaboration	 the separation

is logically associated with window and image entities� The Viewport object uses

the coordinate system of the window	 while the Renderer uses the coordinates of the

image �le�

We found that the development process emphasized objects rather than classes�

The design of classes was almost an afterthought� By inspecting the role hierarchies	

we could easily identify common base classes� In some cases	 by changing the order

of role composition	 we were able to reduce the number of classes needed by the

application� For example	 we were able to reorder the Colorbar to share a common

���

base class with other Viewports based on the �rst twelve roles� This commonality had

not been recognized in the original SAOimage where the implementations appeared

to be very di�erent� The Main Renderer di�ers signi�cantly from other renderers in

that it computes its own scale map� Yet	 by adding an unused ScaleMapProxy and

reordering the roles	 we created a shared base class among all Renderers for the �rst

fourteen roles� We were later able to take advantage of the common proxy to make

the Magni�er more general�

As discussed in Chapters � and �	 we managed control �ow with propagation

components	 and selectable pre� and post�processing options� We found this approach

very useful� It allowed us to coordinate initialization and the response to resize events

without writing extra code� The use of separate resize	 key press	 and mouse tracking

components allowed us to design and extend the propagation of those events	 as

illustrated in the Magni�er example described earlier� Combining implicit invocation

with listener �proxies� allowed arbitrary paths to connect up at initialization without

external code� Listener proxies register an event callback with an announcer in the

object pointed at by a ProxyHandle�

Reuse was common within the application� Sometimes the reuse coincided with

the possibility of a shared base class� But often we reused components in objects

that are otherwise di�erent� The ProxyHandle component is used in almost every

object	 often several times in the same object� Propagation components for mouse	

key	 and resize events	 and components for data bu�ers	 also appear in a variety

of objects� This kind of reuse would not be possible with C�� multiple inheritance�

The repeated uses of ProxyHandle would not be possible with CLOS or Dylan mixins	

either�

���

�� Analysis

As we explained earlier	 the exercise of building a new image display application

was not	 in any sense	 a controlled experiment� Our interest was in gaining initial

anecdotal experience	 and in having a larger test bed for re�ning our approach� Any

comparisons with other methods can be only vague and qualitative	 and must be

prefaced with the understanding that	 in a scienti�c sense	 they may only apply to a

particular application being developed by a particular programmer with an obvious

bias� However	 that being said	 we do feel that we gained some valuable insights�

����� Complexity

Complexity	 for any large application	 is an issue� We were able to follow the code

by looking at the instantiation lists and the �le names in the build directory	 but

not without di�culty� The experience was similar to looking at a large Smalltalk

program�where the code is broken into small pieces that must be browsed�

The design and code was much easier to understand once we started using an

overview diagram	 similar to the one in Fig� ���� Whenever we returned to the ap�

plication source code after a long period of being away	 we always started by looking

at the component overview� The overview diagram gives more detail than class or

object diagrams while providing better abstraction than looking at source code� With

one overview diagram we can trace each concern through the design and identify the

components that address it� We also get a sense of how di�erent concerns �t together�

After studying this diagram for a while we could usually discover where the last build

left o� and where the next build should begin� Between builds we referred to the

diagram often to �nd out where new concerns had not yet been addressed�

Working with the overview diagram and small components was a lot easier than

working with large source code �les� The largest component in the application has

��� lines of code� While a few other components have around �� lines	 the average

���

component has fewer than �� lines� The overview diagram also saved us from having

to traverse levels of hierarchy to �nd where something was implemented�

Understanding the design well enough to �nd code	 is one issue	 but understanding

it well enough to change is another� Rearranging composition order requires under�

standing the dependencies among roles� This was not as much of a problem as it

might seem� With the exception of proxies	 which must obviously appear before the

components that use them	 only a few concerns involved multiple roles� We separated

out the resize concern into its own components to make it more visible� That left

initialization as the one issue that had us looking at code�

The intra�object dependency annotations were sometimes helpful in development	

but rarely essential� For maintenance	 they created tremendous leverage for under�

standing the makeup of an object in one quick glance�

Drawing the diagrams without special tool support was extremely tedious� We

often thought in terms of the the roles�responsibilities matrix	 but we rarely drew it�

We suspect that the development experience would be di�erent with tools to aid in

producing the various diagrams�

Our inheritance hierarchies tended to be much deeper than those found in other

object�oriented applications� Each of the major classes is composed of �� to � roles�

In other approaches	 deep structures spell serious trouble because of hierarchical or�

dering and the unzipping problem� In our experience the deep structures were not an

issue�

����� Compiling and Debugging

We had problems controlling template instantiation with separate compilation� For

some �les	 the template instantiation must be analyzed to produce information needed

by the linker� But the instantiation should generate an executable image only once�

At the time we did most of our work	 we were unaware of a standard syntax for

controlling this distinction� Because we used several di�erent compilers	 we avoided

��

the problem by keeping the instantiation lists in a single �le and compiling everything

at once� The problem is not unique to our work� We assume there will be a solution	

if there is not one already�

Debugging di�ered from our earlier experience both conceptually and physically�

It di�ered conceptually because we viewed concerns in terms of collaborations	 while

the debugger only provided an object and class view� It di�ered physically because

the location of code could depend on both the object and the role component
s sub�

class� This added a little di�culty when setting break points� We also occasionally

encountered template instantiation names	 which are always ugly�

For many components	 we created instrumentation wrappers	 which could be ap�

plied in place of the naked components in a debugging version of main�C� This made it

easy to swap instrumentation in or out at any level to get runtime feedback	 without

editing the actual code� The wrapper made it easier to locate the source of a problem

without the tedium of setting up a lot of debugger watch points�

����� Change

In our approach	 the process of development and the process of change are very

similar� Our development process could be characterized as applying one change

after another as each new concern was added on� The major unknowns	 concerning

complexity and other issues faced by larger applications	 were observed and tested

during the course of development� However	 we also made some attempt to simulate

a more characteristic scenario for software evolution�

Eleven months after the application was last touched	 we conducted a limited

number of experiments trying to apply changes that were not thought of earlier in

development� The process of adding a requirement	 e�g�	 a new key press interac�

tion	 is no di�erent than adding any other concern in our incremental approach to

development� Changing a concern that was already included required a little more

thought� For some concerns we could remove the original roles and treat the change

���

as an addition� An example here might be changing the way in which �le names or

image data are passed in�

Many changes could be handled by modifying an identi�able set of roles and sub�

stituting the new versions� Adding a new keyboard interaction that required richer

detail than initially assumed for key press events involved changing every component

that handled a key press event� While key press events are passed in many places	

we only needed to consider �ve components	 totaling ��� lines of code including

comments� Four of the components were identi�able by their participation in the

Propagate Key Press collaboration� They could also be tested in that limited context

once the change was applied� The remaining component appeared in the keyboard

interaction of the Magnify collaboration� To be fair	 the same components could be

identi�ed syntactically by searching for variations of the word �key	� but no semantic

meaning accompanies this alternative� Viewed in terms of a more traditional object

oriented design	 the key press change occurred in the middle of three distinct inherit�

ance hierarchies a�ecting seven di�erent application classes	 and it required extending

the interface in each case� In our approach	 that poses no special problem� Extending

interfaces without concern for its e�ect on the type system is a major strength of our

approach�

Even for the biggest change	 creating a di�erent application with a completely

di�erent architecture	 we found that we could reuse many of the existing components

that address similar concerns� We created another window application for a key

press interaction	 but no image display� It was as if	 in the course of developing our

application	 we had created a library of generally useful parts�

Compared to our earlier SAOimage implementation	 the outlook for change is very

di�erent� Whether for simple changes that a�ect a few role components	 or a huge

change that reuses components as if from a library	 the new implementation o�ers

many alternatives that were not available in the context of the earlier implementation�

Chapter �

RELATED WORK

Our approach to software development and software evolution touches on related

work in many aspects of software development� We divide our discussion of related

work into three sections� The �rst section looks at discussions of the software evolution

from a theoretical or high level point of view� The second section discusses design

methods that are similar to our own	 and in fact served as precursors for our own

ideas� The third section discusses work on program implementation techniques that

seeks to provide a similar level of �exibility as that discussed here�

���� Theory

In studying the nature of systems	 Simon declared that all natural and arti�cial

systems evolve ����� He also pointed out that the evolution of complex systems can

proceed much faster if stable intermediate parts exist�

Lehman and Belady studied software evolution extensively ����� They describe

many of the qualities of support that we list in the introduction� They do not provide

a list for issues of support	 as such	 which is why we felt a need to do so� However	 they

list the characteristics of program evolution	 presented as a set of laws� Our approach

does not change the validity of any of their observations� We provide a quantitative

improvement in process within the framework they describe� As an example	 one of

Lehman and Belady
s observations is that as the rate of change increases	 more of the

e�ort must be diverted from enhancement to redesign	 restructure	 and reimplement�

Our approach allows more changes to be applied without needing a cleanup	 and

���

lowers the cost of both applying change and performing cleanups� In our approach	

cleanups can be as major as regrouping components in a di�erent architecture or as

minor as subdividing an existing component into two smaller components�

Parnas discussed criteria for choosing the best modularization for supporting evol�

ution ���	 ��	 ���� We presented a response to Parnas
 early papers on modularization

in one of our conference papers �����

In addition to choosing a good modularization	 Parnas argued that should hide

the details of their implementation ���	 ���� On the one hand	 we feel that the level

of information hiding should be appropriate to the context of its use� At �ner levels

of granularity	 more detail must be revealed to allow tighter integration� The need

for hiding can be moderated by the use of adaptor components� On the other hand	

the reasons for information hiding work both ways� Not enough attention has been

focused on shielding the surrounding context	 especially details of an application
s

structure	 from the implementation of modules�

At the time Parnas wrote his seminal papers	 the dominant paradigm for mod�

ularization was functional decomposition� Parnas presented his case for information

hiding together with an argument for data abstraction ���	 ���� We feel that in car�

rying out Parnas
s ideas	 the scales have been tipped a little too far in the direction

of data abstraction� Further improvement in modularization requires that we give

su�cient attention to behavior abstraction as well�

Parnas also presented a case for the hierarchical structuring of decisions ���	 ���

He observed that while hierarchy is a valuable model for composition	 it also works

against change� Parnas discussed the problem of working within the constraints of

a hierarchical structure	 but did not present an alternative� Our work preserves the

hierarchical structuring of composition� But we provide a non�hierarchical mechanism

for change�

���

���� Design Methods

Beck and Cunningham pioneered the method of transforming user requirements into

object design by mapping role�like concerns onto objects� In the CRC �Class	 Re�

sponsibilities and Collaboration� approach to analysis	 each object in the design is

represented by an index or CRC card ��	 ���� The analysts decompose usage scen�

arios around objects to identify the responsibilities of each class	 writing them down

on the CRC cards as they go� The information on each card is then used in designing

the code for that class� The CRC card approach has been used for teaching object

oriented methods ���� and is incorporated in at least one development method ���	 ����

The CRC card approach provides a good start for object oriented design� But

it is generally used only as an informal exercise for eliciting design information� No

attempt is made to relate responsibilities back to requirements or to retain respons�

ibilities as identi�able components in the design�

The OORAM �Object Oriented Role Analysis and Modeling� method of Reens�

kaug	 et al�	 uses role analysis to decompose problems into simpler concerns ���	 ��	

���� The OORAM approach is analogous to earlier object oriented methods like Coad

and Yourdon
s Object Oriented Analysis and Design �OOA�D� ����	 in that the de�

composition starts with a general notion of the problem domain ����� But unlike

OOA�D	 it decomposes the domain into both entities �objects� and behaviors �col�

laborations�� In the OORAM method collaborations are called role models� Larger

complex role models are decomposed further into smaller role models until a manage�

able level of complexity is reached� Roles are abstractions used to talk about objects

while considering only aspects and details relevant to a particular concern� There is

more a sense that objects play roles than that they are composed of roles� Philip

Dellaferra coined the hat tree analogy where an object puts on di�erent hats to play

di�erent roles ���	 p�����

In the OORAM method �formerly called OORASS�	 role de�nitions are combined

���

by the developer when designing each object
s class in a step called synthesis� �When

we subdivided our area of concern into smaller areas	 creating role models for each

subarea	 we succeeded in reducing the modeling problem to manageable proportions	

but created the new problem of integrating the smaller models into a model of the

entire area of concern� The OORASS solution to the integration problem is called

synthesis� ���	 p����� As in the CRC approach to de�ning classes	 the synthesis process

is largely informal and unstructured	 although	 with available tool support	 pieces of

the resulting code can be annotated with role associations�

The dominant process of analysis in OORAM is top�down decomposition� Problem

descriptions are decomposed into smaller pieces until a manageable level of complexity

is attained for each piece� The decompositional approach addresses complexity as a

normal part of the design process� No part of the process	 however	 corresponds to

change	 and there is no concept of overriding� In top�down decomposition	 reuse

and change are handled in the same way� During the process of decomposing the

concerns	 the designer looks ahead to anticipate where reusable components might

�t in and guides the decomposition toward them� Reenskaug uses a yo�yo analogy

to characterize this alternation between top�down and bottom�up views� To apply

a change	 the designer revisits the original process of decomposition	 starting with

a new problem description that includes the change� The designer looks ahead	 this

time	 to try to reuse the original design wherever possible�

Decomposition allows the designer to isolate �generally useful� pieces of the design

that either are being reused	 or might be reusable in a future context� But only pieces

that �t �as is� can be reused� If a piece doesn
t quite �t	 one decomposes further	

to try to isolate the parts that do� The same process is used in separating the parts

that changed from the parts that didn
t�

The OORAM design process uses a separation of concerns in the design analysis	

but that separation is not maintained for software evolution� Without a structured

approach to synthesis	 there is no way to separate parts of the synthesis process into

���

parts that are a�ected by a change and parts that aren
t� Making even a small change

requires revisiting the entire synthesis process for each a�ected object�

In our approach	 roles are treated as entities with identities of their own� Issues

between roles within the same object	 such as overlap and dependency	 are addressed

in a disciplined way as part of a design process that extends the role structure into

source code components�

In Jacobson
s OOSE �Object Oriented Software Engineering�	 the design analysis

starts with a list of use cases ���� Use cases describe behavioral requirements from

the user
s point of view� As de�ned by Jacobson	 the behavior in a use case begins

with a stimulus from an actor external to the system and may involve a sequence of

transactions� In the analysis phase of design	 design objects	 called blocks	� are chosen

by a combination of domain analysis	 inspection of the use cases	 and an assessment

of future change� Each use case is then re�ned and expressed in terms of speci�c

objects in the design� In the construction phase	 pieces of an object
s interface and

behavior are collected from the re�ned description of each use case and used by the

implementor in constructing the implementation�

OOSE has two special kinds of use cases� Abstract use cases capture the common

part between two overlapping use cases� Extension use cases extend or override parts

of the behavior of a normal use case� Extension use cases arise in the requirements

analysis and allow a system
s behavior to be described both in terms of the general

�base� case and more speci�c �extension� cases� Our approach uses both abstract and

extension use cases more aggressively than in OOSE	 separating them from other use

cases not just in the requirements analysis	 but throughout the process of design� In

our approach	 abstract use cases are part of a more general model of decomposing use

cases to smaller collaborations�

�In the design phase of OOSE� design objects are called blocks to allow more �exibility in imple�
mentation� Generally a block�s interface is implemented by a single class� but in some situations
it may divided among several separate classes�

���

In OOSE	 a role corresponds to the interface and behavior of a block in one use

case	 but no name is given to that concept� The object or block structure of the

design is assumed to be frozen early in the analysis	 so no separate concept is needed�

By contrast	 our approach makes roles the central focus of analysis� OOSE carries the

re�nement of each use case
s part of a design object quite far in the design process�

However	 like the synthesis step in OORAM	 OOSE has a step in the construction

phase that is informal and unstructured� Thus	 like OORAM	 requirements can be

mapped to and from speci�c groups of objects	 but not within the objects	 although

source code annotations can be used� As mentioned earlier	 our intention is to extend

the concept of a role all the way into implementation�

The dominant process of analysis in OOSE is stepwise re�nement� Use case de�

scriptions are re�ned at each step of the design process� After the requirements ana�

lysis phase	 use cases are not decomposed into smaller use cases �although abstract

use cases can be used to describe shared overlaps�� Object choices too are made early

in the design analysis and held constant for each use case throughout the remaining

process of design� The lack of further decomposition pushes a signi�cant amount of

complexity into the less structured implementation parts of application construction

where it must be revisited by changes that a�ect existing objects� As described in an

earlier chapter	 OOSE
s tendency is to apply changes by adding new objects to the

design�

Applying new requirements requires applying a di�erent design process or repeat�

ing the original process with a new de�nition of the problem domain at the start� The

danger in either case is that much of the existing implementation will be invalidated�

Our approach stresses both top�down decomposition and stepwise re�nement� As

in OOSE	 new requirements are added as new and extension use cases� Overriding is

an important mechanism in that process� Unlike OOSE	 existing objects and use cases

can be further decomposed to accommodate the change within the existing structure	

while still isolating other parts of that same structure�

���

Although our focus is on change	 the di�erences among OORAM	 OOSE	 and our

own approach more clearly manifest themselves in a comparison of how each approach

handles reuse�

Because of OOSE
s early commitments to decompositions based on the problem

domain	 the resulting design
s architecture is strongly tied to speci�c parts of that

problem domain and thus unlikely to be suitable for reuse within or across applica�

tions� Reuse of prior artifacts must occur either at the beginning of the re�nement

process	 when the application
s block structure is chosen	 or at the end of the re�ne�

ment process	 when each block is implemented� In the former case	 portions of the

block structure are chosen to correspond to the structure of a multiblock artifact �e�g�	

design pattern� to be reused� The artifact
s description can then be incorporated in

the use case description as part of re�nement� In the latter case	 code artifacts that

can be used within a single block �e�g� simple data structures for handling attrib�

utes� are used by the implementer� In the latter case	 the reuse appears only in the

implementation� it does not appear as part of the design process� In reuse between

successive versions of the same application	 whole use cases are reused� Changes are

applied in new extension use cases using the semantics of overriding where needed�

As discussed in an earlier chapter OOSE attempts to leave the implementation of ex�

isting use cases untouched by choosing distinct objects for the new use cases� Where

existing implementation is a�ected	 the details of the change are addressed informally

in the process
 unstructured implementation step�

In the OORAM approach	 decomposition is used to isolate �generally useful�

pieces of design ����� To reuse prior artifacts	 the decomposition must be guided

toward the structures being reused� The design process is modeled top�down	 but

artifacts of potential reuse can only be seen by taking a bottom�up compositional

view� Thus the designer must actually take a dual view approach	 described by

Reenskaug using a yo�yo analogy ���	 p���� In OORAM	 patterns can be expressed

as role models and data structures can be isolated with the appropriate decomposition�

���

Without the concept of overriding	 only pieces that �t �as is� can be reused� Because

of the problems of applying change within an existing design	 as discussed earlier	

reuse between successive versions of the same application is not well supported�

Our approach combines top�down decomposition and stepwise re�nement� Gen�

erally useful pieces can be isolated to reuse existing parts	 or for future reuse	 as in

the OORAM approach� Whole use cases	 and abstractly useful use cases	 �e�g�	 pieces

that were used before applying a change� can also be included and re�ned for reuse	

as in OOSE� Unlike OOSE	 our approach allows further decomposition during the re�

�nement process to reuse collaborations and roles that do not correspond to complete

requirements use cases� Unlike OORAM	 our approach supports adaptations to reuse

parts that would otherwise need modi�cations� Unlike either OORAM or OOSE	

reuse can occur at any point in our design process� Top�down decomposition favors

the reuse of common components through aggregation	 while stepwise re�nement fa�

vors a reuse of common base classes through inheritance� Our method leverages the

advantages of both approaches	 as well as the symbiosis between the two�

���� Implementation Mechanisms

In this section we look at related work on mechanisms of implementation� A variety of

research has addressed the decomposition of objects into factors and the composition

of those parts of objects to form the objects of an application� Some related work

also concerns the use of type parameters or �exible inheritance to achieve adaptable

implementations�

We group the mechanisms under three categories� preprocessors and code generat�

ors	 approaches that involve manipulating the dispatch mechanisms directly	 including

metaclass implementations	 and various language level approaches to inheritance� The

three categories are not mutually exclusive� Our own approach uses templates	 which

is like preprocessing� But we parameterize inheritance using a language feature that

��

has the a�ect of allowing us to manipulate inheritance relationships�

No one of the three approaches is necessarily better than either of the others� In

fact	 for each of the three groups	 we have found approaches to implementation that

may be viable alternatives to the template approach presented here� In each group	

we present these hopeful candidates last�

������ Generators and Preprocessing

In theory	 code generators can produce any code� A good generator needs only a

small set of parameters to produce the code for a desired application� For a role

oriented design one could specify the roles and their relationships and let the generator

work out the details of connecting up dependencies and perhaps even determine the

control �ow� Changing the implementation then involves editing the generator script

�presumably a small task� and rerunning the generator�

Generators are usually built to produce domain speci�c components and applic�

ations within a fairly limited range� The programmer chooses from a �xed set of

components to be arranged in narrowly de�ned relationships� A careful domain ana�

lysis by the builders of the generator is needed to assure that the components and

their relationships cover common concerns in the particular domain� Adding new

components with new interfaces requires writing a new generator�

Preprocessors are usually more general than generators� They de�ne a syntax

for special preprocessor commands that can be added either within the native code	

or read separately� The preprocessor then reads code which is close to the �nal

implementation	 or a representation of it	 and transforms it into compilable code�

Lieberherr
s Demeter ���	 ��	 ��� is a preprocessor environment that addresses

extensible structures in object�oriented development	 and combines design reuse with

source code reuse� Like our approach	 Demeter minimizes and localizes dependencies

on the class structure	 and separates the speci�cation of behavior from the speci�ca�

tion of structure� In Demeter	 components encode fragments of the program structure

���

to allow their position in the �nished application to be inferred� Our components do

not encode any structural dependencies� Instead	 we require explicit statements to

specify the positions of components� The Demeter model is based on graphs and

graph traversals rather than object modules	 and requires the developer to think of

the application in terms of a graph model� The Demeter system requires a special

development environment and its own preprocessor�

The Predator and P systems	 by Batory	 et al�	 factor data structures and other

domain speci�c structures into independent components ��	 ��� In the Predator ap�

proach	 hand�crafted generators are used to compose modules from a limited set of

choices� The �ne grained factoring in this approach is similar to our own	 but ap�

plicable only to a small set of well understood domain components� Our approach

uses the compiler
s own template class generating features	 and is applicable to every

module in an application� New components in our approach can be written by the

application developer as they are needed�

Recent work by Kiczales	 et al�	 addresses an idea called aspect oriented program�

ming ����� Aspects are issues that necessarily cut across multiple components� In

normal component designs	 aspects are mangled in the code that implements each

component� Like Batory
s generator approach	 the AOP approach is to perform a do�

main analysis on families of applications and to then create small generators	 called

weavers� Weavers take code fragments that address the aspect
s concern and weave

them into the application code� The AOP weavers are intended to be simple enough

that the cost of building them can be amortized over a relatively small number of

applications�

At some level	 the AOP approach is similar to ours�we both create code frag�

ments that address speci�c concerns and compose them in various ways to produce

applications� Unlike AOP	 we currently do our weaving manually� �This is not to

say	 however	 that	 in the future	 the composition process could not be automated��

In using an AOP weaver	 there is no guarantee that the code fragments will remain

���

distinct in the generated code�code from several fragments may	 in fact	 be merged

on the same line� Not having to isolate code for di�erent concerns gives the AOP

approach more �exibility in addressing speci�c concerns� But it may also make it

more di�cult to understand the resulting compositions� The main di�erence between

our two approaches is more one of emphasis� The work on AOP seeks to carve out

those aspects for which a component approach would not be feasible� Aspects that

seem likely to fall into that category include persistence	 concurrency	 security	 and

distribution� Our approach is to carve out those aspects for which a �ne grained

component approach is su�cient� However	 there is plenty of overlap� Mendhekar	

et al�	 wrote a paper on an aspect oriented approach to ordering processing steps in

an image enhancement application�an example that also has a role oriented solu�

tion ����� Similarly	 the proxy components described in Chapter � can be used to

address some issues of security and distribution�

Bassett uses a preprocessor to compose Cobol applications hierarchically from

small code fragments� His system	 called Frames	 de�nes a context free preprocessor

language that operates on text	 and supports conditional string and section replace�

ment ��	 �	 ��� The preprocessor makes multiple passes	 allowing replacements to be

propagated through hierarchical relationships and allowing preprocessor commands

to be embedded along the propagation paths� The language includes arbitration to

handle con�icting and overriding commands� With the power of this preprocessor	

it should be possible to de�ne composition operations on fragments similar to our

role components� The ability to de�ne nested and conditional operations might add

capabilities beyond those of C�� templates� The Frame approach is independent of

the target language�

������ Dispatching and Metaclasses

Harrison and Ossher ��	 ��� have been working on composing fragments of object�

oriented programs under the name subject�oriented programming� The intent of SOP	

���

to allow di�erent applications to be implemented with di�erent concerns and then

merged	 is similar to our own� Their is a slight di�erence in emphasis�the SOP

work has been geared toward merging large systems	 while our approach aimed at

decomposing to small concerns� The SOP approach uses a special runtime dispatcher

that �merges� classes by rerouting method calls� Their system supports a larger

variety of merging semantics than the inheritance and parameterization mechanisms

used here� The initial implementation of the SOP dispatcher required two indirections

per call	 which	 for their model of moderate decomposition	 was not a heavy overhead�

Recent work on compile time e�ciency improvements may make the SOP approach to

composition a viable implementation for the work presented here� The SOP approach

o�ers many potential bene�ts� In addition to the richer merging semantics	 their

approach merges compiled components and components implemented in dissimilar

languages�

The composition �lters of Ak!set	 et al� ��� also address composition through

runtime dispatching� Their Sina language o�ers additional capabilities such as dis�

patching based on runtime queries	 and can encode a wide range of concerns	 includ�

ing persistence and transactions� The method call dispatchers in both these systems

provide considerably more compositional �exibility than our approach to implement�

ation� But custom dispatching requires special runtime support and adds extra levels

of indirection� Our approach stays within the semantics of inheritance and aggrega�

tion� It can be handled by standard C�� compilers and does not require any special	

extra�language mechanisms�

Mezini has developed a Smalltalk metaclass that allows mixin�like classes to be

composed into the inheritance structure of a class ���	 ���� Her metaclass manages

the dispatching and variable accesses	 and also manages the name spaces� Although

we have not used this implementation	 we have talked with Mezini and it appears to

support our approach� In addition	 her mechanism is dynamic�compositions can be

changed at runtime� With this mechanism	 our approach might be usable for rapid

���

prototyping�

������ Inheritance and Parameterization

It is interesting to note that in the �rst object language	 Simula I	 objects could be

nodes of multiple data structures ����� Simula I did not have inheritance� In Simula II	

when inheritance was introduced	 Nygaard	 et al�	 had to sacri�ce the multiple node

feature due to the hierarchical nature of inheritance�

Bracha and Cook demonstrated delayed inheritance using type parameters	 calling

the resulting components mixins ����� The term roughly corresponds to the use of

multiply inherited classes in CLOS and Dylan� Unfortunately the meaning of the

term mixin is often confused with the di�erent semantics of multiply inherited base

classes in C��� Bracha
s dissertation focused on semantics and language issues and

did not present mixins in the context of a design method �����

Multiple inheritance is treated as linear inheritance in CLOS and Dylan� Multiply

inherited classes can call functions in other multiply inherited classes if those classes

appear earlier in the order of linear inheritance� The semantics of composing mixins in

linearized multiple inheritance is essentially the same as our lists of singly inherited

template instantiations� The implementation of multiple inheritance in CLOS and

Dylan	 does however have one signi�cant di�erence� variables or methods with the

same name are merged� Our approach allows names	 and even whole mixins	 to be

reused in the same object� In CLOS	 the problem of merged name spaces might be

resoled by changing the inheritance semantics in a metaclass	 much like the Mezini

metaclass in Smalltalk	 discussed above�

Goguen did extensive work on reuse and parameterized programming in Ada and

his own speci�cation language ���� This work has similarities with our own	 including

building applications from code fragments	 and composing them using module expres�

sions� Goguen developed his ideas on parameterized programming at a time when

the dominant model of program structure was functional� In addressing the problem

���

of how to compose the fragments	 he chose a functional model� He developed an

approach	 using a higher order functional language	 based on the theory of sorts	 that

works with semantic constraints on the components and their compositions� A major

concerns appears to be capturing some of the semantic issues of composition in the

components themselves� Our approach requires the developer to separately analyze

composition semantics when building the composition� OBJ
s model and syntax are

di�cult for non�mathematicians to understand� By contrast	 we address composition

as simple inheritance� Our components and speci�cations are written in a common

programming language� The underlying model of inheritance and parameterization

can be described using a modal logic where the semantic interpretation of a compon�

ent depends on its position in a structure �	 ����

Steyaert	 et al�	 demonstrated a dynamic mixin mechanism in a prototype deleg�

ation language called Agora ����� In Agora	 an object includes a set of alternative

mixins from which it inherits� The object accepts messages to dynamically switch

among the mixins in the set	 but new mixins cannot be added� The mechanism

supports alternative roles	 but not extension�

The ML language supports encapsulation and inheritance�like properties through

functors ����� Functors are operations that take one or more structures and produce

another structure that combines them in some way� But the signature of the structures

on which it operates cannot be a parameter or of variable type�it
s implementation

names the signatures on which it operates� In our approach a role may expect some

features of the supertype
s signature in a composition� But the resulting composition

must include all the other features of the inherited supertype�they might be needed

by the next role in the composition� In a private conversation	 Peter Lee of CMU

said that they had thought of providing functors with parameterized signatures	 but	

at the time	 could not think of a compelling use�

Erik Ernst	 at Aarhus University	 is working on a new de�nition of the semantics of

BETA that allows mixin style multiple inheritance without name ambiguity� Where

���

a name is declared more than once	 the semantics de�nes which name will be extern�

ally visible and the conditions under which each declaration is available for binding�

This approach should support our technique	 although it adds an overhead for each

component� Some additional code may also be needed in the container that speci�es

an object
s composition to address sharing of state between di�erent components� No

papers have yet been published on this work�

Chapter ��

CONCLUSION AND FUTURE WORK

���� Supporting Change

In the introduction	 we presented a list of criteria for judging the nature and extent

of support for change� In this section	 we revisit that list and describe the ways in

which our approach addresses each property�

Our support for change has two major themes� First is that we model change in

terms of use cases	 and then keep that same model through the design and in the imple�

mentation� Second	 our approach to applying change is compositional�components

speci�c to that change are inserted into compositions with existing components of

the application� Other than the possible addition of new objects	 the existing object

structure does not change�

� Flexibility refers to allowing many kinds of changes with simple �xes�

Our approach allows changes	 modeled by use cases	 to be added without major

restructuring or having to edit a lot of existing code� Our approach retains the

ability to support changes to data types inherent in object oriented implement�

ations	 while adding support for behavioral change� It has fewer limitations

than other common approaches	 such as using only existing interfaces� It does

not require the changes to have been anticipated or otherwise limited to speci�c

sites�

Our approach assumes that the application	 or at least the a�ected parts of

the application	 can be recompiled to e�ect the change� Changes that must be

���

applied to running systems are not speci�cally addressed�

Our approach takes a compositional approach� Some kinds of changes are dif�

�cult to apply in this way� A new requirement to increase the speed of an

application by a factor of two might be an an example of a concern that could

not be isolated in its own components�

� Modularity refers to the ability to isolate concerns�

Because the role compositions are normal classes	 our approach keeps the mod�

ularity provided by standard object oriented approaches� The roles add another

layer of modularity� Role components can be used to isolate behavior and other

concerns that are either �ne grained or cut across objects� In our idioms	 we

show how to separate concerns or composition from algorithmic concerns� In

one of our papers we even demonstrated separating the architecture from other

concerns �����

Not all concerns can be represented as modules� However	 by using groups of �ne

grained components	 we have considerably extended the range of concerns that

can be addressed in a modular fashion� We have also removed the requirement

that concerns addressed by modules be ordered in a hierarchy�

� Durability refers to continuing to support new changes even after many changes

have already been applied�

In our example of applying two successive changes to the container recycling ma�

chine	 we demonstrated the unique ability of our approach to accept change in a

way that does not qualitatively a�ect the ability to accept further change� In our

experience with the image display program	 we found that using a development

style that applies concerns as a series of small changes actually enhances the

ability of the application to support further change by reinforcing �ne grained

���

modularity around concerns�

� Wholeness refers to support for change across all phases and artifacts of devel�

opment�

Our approach addresses change as a complete process from requirements through

implementation� Because our approach uses the same model for requirements	

design	 and implementation	 it also makes it easier to maintain consistency

among development artifacts� Many design approaches collect lists of object

responsibilities or specify the functions in object interfaces	 but do not address

how the di�erent responsibilities or functions interact� The result appears as a

�here
s the design	 now implement it� step where the developer is left to apply

his or her own expertise with little guidance from the development methodology�

The issues in this gap between the conceptual design and the concrete imple�

mentation create a barrier between design reuse and implementation reuse� In

this thesis we laid out a process with small well de�ned steps all the way from

requirements to compilation�

� Proportionality refers to the relative di�culty of applying some changes in

the design versus� applying the corresponding changes in the implementa�

tion�

Again	 because we use the same models in every phase	 we have a high

likelihood that straightforward changes in the design have straightforward

implementations� We also present a method of implementation that avoids

chain reaction breakdowns of the type system that could otherwise turn

seemingly simple changes into major projects�

� Traceability refers to the ability to trace the connections between identi��

able requirements and identi�able components of implementation�

Again	 because our use case models of requirements directly correspond

��

to collaboration models in the design and implementation	 our approach

provides unique support for traceability�

� Clarity refers to the ability to understand the design for maintenance purposes�

Our approach augments the high level models of architectural structure and low

level listings of code with an intermediate level of representation that provides a

road map based on concerns� At the high level	 the same models exist	 and are

less likely to be cluttered by extra objects addressing non�algorithmic concerns�

At the low level our code is broken into smaller pieces addressing well de�ned

concerns�

We believe that our approach represents a potential improvement in program

understandability� However	 we have not yet tested this hypothesis by giving

one of our programs to a neophyte programmer to change� It is a task for future

work�

� Breadth refers to the range of changes that are supported�

As we explained above	 by going to �ner grained components and a less hier�

archical mechanism of composition	 we have extended the range of changes that

could be handled by code modules over other object oriented approaches�

� Depth refers to the ability to make changes at many levels of granularity�

Depth is another area where our approach stands out in comparison to other

common approaches to �exibility� By editing the speci�cation of composition	

we can replace one little component	 or large components made of many smaller

components� Developers can choose a large component that gets them close to

their goal	 and still edit or replace small pieces of that component to make it

better �t their needs�

���

� Balance refers to what has to be sacri�ced in order to gain �exibility�

In our design of the container recycling machine	 and in an earlier paper on a

design of graph traversals ����	 we showed that our approach not only provides

more �exibility than common approaches such as patterns and frameworks	

but	 when compared with the earlier published designs	 it yields simpler ar�

chitectures	 and	 at least in its C�� implementation	 it yields more e�cient

implementations�

It is certainly easier to build an initial application without worrying about

separating concerns into smaller modules� Even though in our own experience

it became second nature to do so	 separating concerns requires more careful

thinking� We do not know how much of a di�erence in e�ort our approach

requires� That is also a subject needing future study� Approaches that build in

�exibility	 such as our own	 expect to recoup the added initial cost by reduced

prototyping and maintenance costs and higher value of products that better

meet customer expectations�

Our approach takes a qualitatively di�erent view of program construction and

implementation than most programmers learn and practice� As such	 it opens up

many opportunities for new approaches to existing problems� We will not attempt to

list all of the new ideas we have found so far�this thesis is already overly long� We

discussed some of the alternatives	 such as our approach to data structures and the

handling of control �ow	 in Chapter ��

���� Future Directions and Open Questions

������ Implementation

While we demonstrated one way of implementing a role design	 there are other meth�

ods using di�erent mechanisms and other languages� This work started with a set

���

of real requirements from a common real�world activity� Researchers proposing other

methods of producing �exible or adaptable software can demonstrate the utility of

their tools in solving the same set of problems� The appendix includes additional

guidelines for those attempting to provide an implementation speci�cally for the de�

velopment process presented here�

������ Scalability

Questions remain about the scalability of our approach both in terms of program size

and in terms of numbers and abilities of developers� In half a dozen small sample

programs we had little di�culty applying the approach� In the one medium sized

application	 the approach seemed to help in managing the complexity� But this

experience is very limited� More experience with larger applications is needed to

understand the strengths and limitations of the approach�

All of experience	 to date	 has involved the same one programmer� We know it can

be understood by other programmers�Krausmuth	 a professor at the University of

Vienna	 taught our template approach as part of a tutorial on template programming

at ECOOP
��	 and Smaragdakis	 a student at the University of Texas at Austin	 has

extended and improved one of our designs and its implementation ����� However	

we don
t know how accessible it is for average programmers to understand or what

di�culties they might �nd in applying it�

Finally	 we have no experience with using the method on a multi�programmer

team� There are many questions about the ability of several programmers to de�

velop or share a common design	 or the ability of one programmer to use or reuse

components written by another�

������ Tool support

For our approach ever to become viable	 we would need tools that support it� Our

experience showed that program understanding and analysis was greatly enhanced

���

by the use of visual representations such as role matrices �e�g� Fig� ����	 annotated

matrix columns �e�g� Fig� �����	 and overview diagrams �e�g� Fig� ������ We produced

all of these graphical representations by hand� Tools could reduce the work of produ�

cing such diagrams� Moreover	 the tools could be smart�automatically identifying

syntactic dependencies within compositions	 modeling control �ow and comparing

interfaces� Tools could be used to play what�if games on various orderings and com�

binations of components	 to reduce the mental e�ort of �nding workable compositions�

Many of the glue components that we added to the abstract model in Fig� ��� to pro�

duce the executable model in Fig� ���� could be automatically generated by a smart

set of tools� In fact	 an interesting question remains as to just how much of the process

could be automated �see next item��

������ Visual Programming

Roles could form the basis of an approach to visual programming� Visual program�

ming is a way to reduce the complexity of programming by providing rich visual

abstractions that can be graphically manipulated to produce meaningful programs�

Our approach has been presented as text based	 with the developer writing template

components and lists of template instantiations� However	 overview diagrams	 such

as the one shown in Fig� ����	 contain all of the information needed to produce the

complete set of template instantiations for an application� Many of the components

are common across applications or could be generated from information contained in

other components� It would be interesting to compare the strengths and weaknesses

of our approach with other component based visual application builders� The depth of

our approach might make it easier to customize large grained components to produce

more polished applications�

���

������ Reuse

This work focused on the process of change	 but it also has implications for reuse�

Common approaches to code reuse involve looking for components in a library that

match the speci�cations of components in the design�by comparing facets or signa�

tures� In ����	 Brad Cox predicted that the revolution in software productivity would

come from reuse based on libraries of generic components	 called software IC
s �����

But in this model of reuse	 potential savings apply only to the �nal implementation

steps of the development process� There is also overhead attached to each reusable

component	 both on the front end for making components available for reuse and at

the back end for �nding and applying foreign code in an application�

With our approach	 reusable code can be sought at the beginning of the design

process	 based on concerns in the requirements	 and the code doesn
t have to exist

in a library to be found or reused� In applications developed with our style	 code

fragments that address speci�c concerns exist as separate components and are already

implemented in a reusable form�role templates� Reuse could involve looking at

applications that address a similar concern	 even if the application is otherwise quite

di�erent� Reusable code is then found and extracted by looking at how the existing

application addresses that concern� The fact that the components can be run in an

existing application should make it easier to understand what they do and how to use

them	 especially if they have not been carefully documented for purposes of reuse�

Historically	 the reuse of large scale components has posed a di�cult tradeo�

between speci�city and generality ����� Components that are overly customized	 and

thus well suited	 for a particular use are hard to adapt to other requirements and

unlikely to be reused� Components that are overly general are either poorly adapted

to any speci�c use	 or	 if loaded with features to accommodate a variety of uses	 are

�To Cox� the most compelling argument for dynamic binding was to protect the library provider�s
source code� �It is hard to see how a commercial marketplace in generic packages could develop as
long as suppliers must trust the compiler to protect their proprietary interests in source code� �����

���

likely to be large and ine�cient� Our approach o�ers an alternative to this tradeo��

By factoring components into small	 easily interchangeable pieces	 we allow low level

customizability in large systems and an e�cient implementation�

A recently emerging model for corporate reuse is based on large scale components	

precisely tailored to the customer
s speci�cation	 adapted to the customer
s architec�

ture	 and delivered just in time� For potential consumers	 the current problem with

reusing large scale components is overcoming architectural mismatch ��	 ���� The

issue for the suppliers is not so much reuse as change�adapting products to satisfy

new requirements in a timely manner� The approach presented in this thesis could

be applied to building and maintaining modest sized components for this model of

reuse�

�����	 Hybrid approaches

Our approach has potential to be used in combination with other component devel�

opment approaches� Our approach has strength in its ability to maintain �exibility

at many levels of detail and for supporting families of related applications	 and it

can produce an e�cient implementation� It could bring these strengths to a collab�

oration with approaches that address other issues such as dynamic change	 realtime

constraints	 embedded systems	 and distributed objects in client�server applications�

����� Legacy code

Roles could provide a migration path from structured legacy code� Much legacy code

has a functional structure rather than an object oriented one� Functions can also be

decomposed into roles�the collaborations in our approach capture functions� The

same roles can be composed around functions just as they can be composed into

objects� An interesting line of research might try to decompose the functions of an

existing application into roles�duplicating the original application	 and then rearran�

ging those roles to form an object oriented architecture for the same application�

BIBLIOGRAPHY

��� M� Ak!sit	 L� Bergmans	 and S� Vural� An object�oriented language�database

integration model� The composition��lters approach� In Proceedings of the ����

European Conference on Object
Oriented Programming	 pages �� ���	 ����

�� F�S� Aliee and B�C� Warboys� Roles represent patterns� In Proceedings of the

Workshop on Pattern Languages of Object
Oriented Programs at ECOOP���	

�����

��� K� Barrett	 B� Cassels	 P� Haahr	 D�A� Moon	 K� Playford	 and P�T� Withington�

A monotonic superclass linearization for Dylan� In Proceedings of the ���	 ACM

Conference on Object
Oriented Programming Systems� Languages and Applica

tions	 pages �� �	 �����

��� P�G� Bassett� Frame�based software engineering� IEEE Software	 ������ ��	 July

�����

��� P�G� Bassett� Framing Software Reuse� Lessons from the Real World� Prentice

Hall	 �����

��� P�G� Bassett� The theory and practice of adaptive reuse� In Proceedings of the

��� ACM Symposium on Software Reusability	 pages �	 �����

��� D� Batory	 V� Singhal	 M� Sirkin	 and J� Thomas� Scalable software libraries� In

Proceedings of SIGSOFT���� Foundations of Software Engineering	 pages ���

���� ACM Press	 �����

���

��� D�S� Batory and S� O
Malley� The design and implementation of hierarchical

software systems with reusable components� ACM Transactions on Software

Engineering and Methodology	 �������� ���	 October ����

��� K� Beck� Think like an object� UNIX Review	 �������� ��	 ����

���� K� Beck and W� Cunningham� A laboratory for teaching object�oriented thinking�

In Proceedings of the ���� ACM Conference on Object
Oriented Programming

Systems� Languages and Applications	 pages � �	 �����

���� T� Biggersta�� The library scaling problem and the limits of concrete component

reuse� In Proceedings of the Third International Conference on Software Reuse�

IEEE Computer Society Press	 �����

��� G� Booch� Object Oriented Design with Applications� Benjamin�Cummings	

�����

���� G� Bracha� The programming language JIGSAW� Mixins� modularity and inher

itance� PhD thesis	 University of Utah	 ����

���� G� Bracha and W� Cook� Mixin�based inheritance� In Proceedings of the ����

ACM Conference on Object
Oriented Programming Systems� Languages and Ap

plications	 pages ��� ���	 �����

���� F�P� Brooks� No silver bullet� essence and accidents of software engineering�

IEEE Computer	 ������� ��	 April �����

���� A�M� Burkett� Clarifying roles and responsibilities� CMA� the Management

Accounting Magazine	 ������ �	 March �����

���� K� Chow� Supporting Library Interface Changes in Open Systems Software Evol

ution� PhD thesis	 University of Washington	 �����

���

���� P� Coad and E� Yourdon� Object Oriented Design� Prentice�Hall	 �����

���� D� Coleman	 P� Arnold	 S� Bodo�	 C� Dollin	 H� Gilchrist	 F� Hayes	 and

P� Jeremaes� Object
Oriented Development� The Fusion Method� Prentice�Hall	

�����

��� B� Cox� Object Oriented Programming� An Evolutionary Approach� Addison�

Wesley	 �����

��� R� Ducournau	 M� Habib	 M� Huchard	 and M�L� Mugnier� Proposal for a mono�

tonic multiple inheritance linearization� In Proceedings of the ���� ACM Con

ference on Object
Oriented Programming Systems� Languages and Applications	

pages ��� ���	 �����

�� J� Fiadeiro	 T� Sernadas	 T� Maibaum	 and A� Sernadas� Describing and structur�

ing objects for conceptual schema development� In Conceptual Modeling� Data

bases� and Case� An Integrated View of Information Systems Development	 pages

��� ���� John Wiley and Sons	 Inc�	 ����

��� S� Freeman� Partial revelation and Modula��� Dr� Dobb�s	 �������� �	 October

�����

��� E� Gamma	 R� Helm	 R� Johnson	 and J� Vlissides� Design patterns� Abstrac�

tion and reuse of object�oriented design� In Proceedings of the ���� European

Conference on Object
Oriented Programming	 pages ��� ���	 �����

��� E� Gamma	 R� Helm	 R� Johnson	 and J� Vlissides� Design Patterns� Elements

of Reusable Object
Oriented Software� Addison�Wesley	 �����

��� D� Garlan	 R� Allen	 and J� Ockerbloom� Architectural mismatch� Why reuse is

so hard� IEEE Software	 ������� �	 November �����

���

��� J�A� Goguen� Principles of parameterized programming� In Software Reusability	

pages ��� �� Addison�Wesley	 �����

��� G� Gottlob	 M� Schre�	 and B� R"ock� Extending object�oriented systems with

roles� ACM Transactions on Information Systems	 �����	 July �����

��� W� Harrison and H� Ossher� Subject�oriented programming �a critique of pure

objects�� In Proceedings of the ���� ACM Conference on Object
Oriented Pro

gramming Systems� Languages and Applications	 pages ��� ��	 �����

���� W� Harrison	 H� Ossher	 R�B� Smith	 and D� Ungar� Subjectivity in object�

ooriented systems workshop summary� In Addendum to the Proceedings of the

���� ACM Conference on Object
Oriented Programming Systems� Languages and

Applications	 pages ��� ���	 �����

���� R� Helm	 I�M� Holland	 and D� Gangopadhyay� Contracts� Specifying behavioral

compositions in object�oriented systems� In Proceedings of the ���� ACM Con

ference on Object
Oriented Programming Systems� Languages and Applications	

pages ��� ���	 �����

��� I� Jacobson	 M� Christenson	 P� Jonsson	 and G� "Overgaard� Object
Oriented

Software Engineering� A Use Case Driven Approach� Addison�Wesley	 nd edi�

tion	 ����

���� R� Johnson and B� Foote� Designing reusable classes� Journal of Object
Oriented

Programming	 ���� ��	 June�July �����

���� G� Kiczales� Traces �a cut at the �make isn
t generic� problem�� In Object Tech

nologies for Advanced Software� Proceedings of the First JSSST International

Symposium	 pages � �	 �����

��

���� G� Kiczales	 J� Lamping	 A� Mendhekar	 C� Maeda	 C� Lopes	 J�M� Loingtier	

and J� Irwin� Aspect oriented programming� In Proceedings of the ��� European

Conference on Object
Oriented Programming	 pages � �	 �����

���� M�M� Lehman and L�A� Belady� A model of large program development� In

Program Evolution	 pages ��� ��� Academic Press	 �����

���� M�M� Lehman and L�A� Belady� Program Evolution� Academic Press	 �����

���� K�J� Lieberherr and A�J� Riel� Demeter� A CASE study of software growth

through parameterized classes� Journal of Object
Oriented Programming	 ������

	 August�September �����

���� K�J� Lieberherr and C� Xiao� Minimizing dependency on class structures with

adaptive programs� In Object Technologies for Advanced Software� Proceedings

of the First JSSST International Symposium	 pages �� ���	 �����

���� K�J� Lieberherr and C� Xiao� Object�oriented software evolution� IEEE Trans

actions on Software Engineering	 ��������� ���	 April �����

���� R� Malan	 R� Letsinger	 and D� Coleman� Object
Oriented Development at Work�

Fusion in the Real World� Prentice�Hall	 �����

��� R� Martin	 D� Riehle	 and D� Buschman� Pattern Languages of Program Design

�� Addison�Wesley	 �����

���� A� Mendhakar	 G� Kiczales	 and J� Lamping� RG� A case�study for aspect ori�

ented programming� Technical Report SLP ������ P������	 Xerox Palo Alto

Research Center	 �����

���� B� Meyer� Object
Oriented Software Construction� Prentice Hall International	

�����

���

���� M� Mezini� Dynamic object evolution without name collisions� In Proceedings of

the ��� European Conference on Object
Oriented Programming	 pages ��� ��	

�����

���� M� Mezini� Maintaining the consistency and behavior of class libraries during

their evolution� In Proceedings of the ��� ACM Conference on Object
Oriented

Programming Systems� Languages and Applications	 ����� to appear�

���� D� Notkin	 D� Garlan	 W�G� Griswold	 and K�J� Sullivan� Adding implicit invoc�

ation to languages� Three approaches� In Proceedings of the �st JSSST Interna

tional Symposium on Object Technologies for Advanced Software	 pages ��� ����

Springer�Verlag	 �����

���� K� Nygaard and O�J� Dahl� The development of the Simula languages� In History

of Programming Languages	 pages ��� ���� Academic Press	 �����

���� D�L� Parnas� On the criteria to be used in decomposing systems into modules�

Communications of the ACM	 ���������� ����	 December ����

���� D�L� Parnas� A technique for software module speci�cation with examples� Com

munications of the ACM	 ��������� ���	 May ����

���� D�L� Parnas� On the design and development of program families� IEEE Trans

actions on Software Engineering	 SE������ �	 March �����

��� D�L� Parnas� Designing software for ease of extension and contraction� IEEE

Transactions on Software Engineering	 SE������� ���	 March �����

���� D�L� Parnas	 P�C� Clements	 and D�M� Weiss� The modular structure of complex

systems� IEEE Transactions on Software Engineering	 SE��������� ��	 March

�����

���

���� C� Prehofer� Feature�oriented programming� A fresh look at objects� In Proceed

ings of the ��� European Conference on Object
Oriented Programming	 pages

��� ���	 �����

���� T� Reenskaug� Working With Objects� The OOram Software Engineering Method�

Manning	 �����

���� T� Reenskaug and E�P� Anderson� System design by composing structures of

interacting objects� In Proceedings of the ���� European Conference on Object

Oriented Programming	 pages ��� ��	 ����

���� T� Reenskaug	 E�P� Anderson	 A�J� Berre	 A� Hurlen	 A� Landmark	 O�A� Lehne	

E� Nordhagen	 E� Ness�Ulseth	 G� Oftedal	 A�L� Skaar	 and P� Stenslet� OORASS�

Seamless support for the creation and maintenance of object�oriented systems�

Journal of Object
Oriented Programming	 ������ ��	 October ����

���� D� Riehle� Describing and composing patterns using role diagrams� In H� Ste�en	

editor	 WOON ��	� Conference Proceedings	 St� Petersburg	 Russia	 June �����

���� D� Riehle� Composite design patterns� In Proceedings of the ��� ACM Con

ference on Object
Oriented Programming Systems� Languages and Applications	

����� To appear�

���� J� Rumbaugh� Getting started� Using use cases to capture requirements� Journal

of Object
Oriented Programming	 ������ �	 September �����

���� J� Rumbaugh� UML Reference Guide� Addison�Wesley	 �����

��� J� Rumbaugh	 M� Blaha	 W� Premerlani	 F� Eddy	 and W� Lorenson� Object

Oriented Modeling and Design� Prentice�Hall	 �����

���

���� A� Sernadas	 C� Sernadas	 and J�F� Costa� Object speci�cation logic� Journal of

Logic and Computation	 �������� ���	 October �����

���� H�B� Simon� The Science of the Arti�cial� MIT Press	 �����

���� Y� Smaragdakis� A cleaner way to implement collaboration�based designs� De�

partment of Computer Science	 University of Texas at Austin	 �����

���� R� Stata and J�V� Guttag� Modular reasoning in the presence of subclassing�

In Proceedings of the ���� ACM Conference on Object
Oriented Programming

Systems� Languages and Applications	 pages �� ��	 �����

���� P� Steyaert	 W� Codenie	 T� DeHondt	 K� DeHondt	 Lucas C�	 and M�V�

Limberghen� Nested mixin�methods in Agora� In Proceedings of the ����

European Conference on Object
Oriented Programming	 pages ��� ��	 �����

���� B� Stroustrup� The C�� Programming Language� Addison�Wesley	 second edi�

tion	 �����

���� K�J� Sullivan and D� Notkin� Reconciling environment integration and soft�

ware evolution� ACM Transactions on Software Engineering and Methodology	

������ ��	 July ����

���� K�J� Sullivan	 J� Socha	 and M� Marchukov� Using formal methods to reason

about architectural standards� In Proceedings of the ��th International Confer

ence on Software Engineering	 pages ��� ���� IEEE Computer Society Press	

�����

���� J�D� Ullman� Elements of ML Programming� Prentice Hall	 �����

��� M� VanHilst� SAOimage� Bulletin of the American Astronomical Society	 ��	

�����

���

���� M� VanHilst and D� Notkin� Decoupling change from design� In Proceedings of

SIGSOFT��	 Foundations of Software Engineering	 pages �� ��	 �����

���� M� VanHilst and D� Notkin� Using C�� templates to implement role�based

designs� In Proceedings of the �nd JSSST International Symposium on Object

Technologies for Advanced Software	 pages ��� Springer�Verlag	 �����

���� M� VanHilst and D� Notkin� Using role components to implement collaboration�

based designs� In Proceedings of the ���	 ACM Conference on Object
Oriented

Programming Systems� Languages and Applications	 pages ��� ���	 �����

���� R�J� Wieringa	 W� de Jong	 and P� Sprint� Roles and dynamic subclasses� a

modal logic approach� In Proceedings of the ���� European Conference on Object

Oriented Programming	 pages � ��	 �����

���� R� Wirfs�Brock and B� Wilkerson� Object�oriented design� A responsibility�

driven approach� In Proceedings of the ���� ACM Conference on Object
Oriented

Programming Systems� Languages and Applications	 pages �� ��	 �����

���� R� Wirfs�Brock	 B� Wilkerson	 and L� Wiener� Designing Object
Oriented Soft

ware� Prentice Hall	 �����

Appendix A

A LIST OF CRITERIA FOR ROLE IMPLEMENTATION

What properties of a role oriented design should extend into the implementation

to maintain the ability to support change� Below	 we enumerate a set of criteria for a

role oriented implementation� They are not intended to be exhaustive or indicative of

any particular method of implementation	 but merely to provide points of discussion

for others following in this path�

�� Objects� The implementation must support an object based design model�

Role oriented design is an extension of object oriented design� At some level	

role oriented designs are object based	 if not object oriented� Thus the imple�

mentation must meet the same expectations as those of other object oriented

methodologies�

� Roles� The implementationmust support units of encapsulation that correspond

to roles�

For roles to exist in the implementation	 there must be a way to implement

roles as components of the implementation� Since roles are composable parts of

objects	 role components must be composable parts of object implementations

or classes�

�a� Role composition� Since objects in the design are formed by composing

roles	 it must be possible to form object implementations by composing

role components�

���

�b� Role reuse� Since roles are reusable in design	 role components must be

reusable in implementation� Roles should have an implementation that is

separate from that of the object compositions in which they are used�

Raymie Stata described a way of grouping parts of classes to facilitate

modular reasoning ����� Smalltalk
s Envy environment provides a similar

grouping mechanism called class categories� In both cases the class groups

have no meaning outside of the class where they are de�ned�

�c� Role state� Since roles in the design can specify both state and behavior	

role components must be able to include both state variables and behavi�

oral functions or methods�

The Smalltalk Envy version control mechanism called categories is some�

times used to support multiple views� The developer can specify which

categories are included in each version� The class subcomponents in an

Envy category can include methods	 but no state variables� Thus Envy

categories could not be used to implement roles in a role oriented design�

�� Recomposability� Roles can be recomposed in di�erent combinations to form

objects in the design� In other words	 new objects can be created from existing

pieces and used by other objects in the design�

In traditional object oriented programming	 classes can theoretically be reused

in di�erent compositions in di�erent applications	 or di�erent parts of the same

application� But the implementation imposes signi�cant limitations� The main

problem is that the source code for each class typically encodes the type names

or	 worse	 the class names of other objects in the application
s structure to

which the class refers	 or which it includes as parts� Classes bound in such �xed

relationships cannot be switched for other classes	 or classes that do not have

the named type	 without causing the unzipping problem described earlier�

���

�a� Signature translation� Two roles developed in di�erent contexts may use

di�erent names and signatures for the same functions� The implementation

should allow translations to be applied to establish the intended bindings�

�b� Disjoint naming� Separate roles may use the same name to access di�erent

variables or functions� Confounding of names occurs when di�erent roles

are forced to use the same name space�

Two roles developed in di�erent contexts may inadvertently use the same

name for di�erent things� The implementation should allow each role to

make its own associations without being confounded by the use of names

in other roles�

A single role may also be included twice in the same object	 either because

the same role occurs in di�erent use cases	 or because the object parti�

cipates in di�erent instantiations of the same use case collaboration� The

latter might occur when an employee divides his or her time between two

projects	 or an object appears as a node in the orderings of more than

one list data structure� In such cases	 the implementation must be able to

duplicate state rather than merging it�

�� Decomposability� Within an object	 roles can be decomposed into two or more

smaller roles	 where each new role addresses a narrower part of the original

concern�

Decomposition is used	 for example	 where roles overlap�the shared part is

separated out to be instantiated only once� The implementation can require

that a concern is met	 but it should not assume that the functions that address

that concern are always provided by a single role or component� If di�erent

functions are accessed through a single handle or interface	 they should continue

being accessible through that handle or interface even after being separated in

di�erent roles�

��

�� Extensibility� Adding a new role to an existing object must be able to add new

behavior to that object and also to change existing behavior�

�a� Role augmentation� New roles must be able to add new functions to the

interface of the existing object and access new functions in objects with

which their own object already collaborates�

In the example of adding the Validate Item use case to the container re�

cycling machine	 a new isValid function was de�ned for the DepositItem

objects and called from a new addItem function in the DepositReceiver

object�

�b� Role access� New roles must be able to access functions and attributes in

existing roles of the object�

In the container recycling machine example	 roles from the PrintReceipt

use case access state variables belonging to roles from the Add Item use

case and may also call functions de�ned in the Add Item roles�

�c� Role overriding� New roles must also be able to override existing func�

tions in calls from other objects� Overriding is an important part of the

relationship between extension use cases and the use cases they extend�

�d� Role insertion� A new role must be able to add a new step between existing

steps of an object
s behavior�

Within the recycling machine
s DepositReceiver object	 the Stuck Item

use case
s role added an additional step between the Validate Item and

Add Item steps of the addItem behavior� Taking an example from another

domain	 to add an annotation graphic to an image display object	 the

graphic must be inserted after the image bu�er is updated and before it is

sent to the display�

��

If control �ow within an object is handled by the roles themselves	 then

adding a step implies overriding an existing function in a call between two

roles	 and allowing the new function to access the overridden function to

resume the remaining steps�

�� Ceteris paribus� Compared to other methods of implementation	 the role imple�

mentation should not impose a substantial penalty in development e�ort	 design

complexity	 or runtime speed�

Appendix B

DISPLAY APPLICATION INSTANTIATION LISTS AND

MAIN ROUTINE

�� default empty base class

class empty ���

�� shell class for display connection and initialization

class Shell�� � public XShellRole �empty� ���

class Shell�� � public XVisualRole �Shell��� ���

class Shell�� � public XColorRole �Shell��� ���

class Shell�� � public HardColorRole �Shell��� ���

class Shell�� � public HardColorCopyRole �Shell��� ���

class Shell�� � public PseudoColorGammaRole �Shell��� ���

class Shell�� � public ColorPreferenceRole �Shell��� ���

class Shell�� � public XGCRole �Shell��� ���

class Shell�� � public XWindowRole �XFormClass�Shell��� ���

class Shell�� � public PseudocolorPResizeRole ���Shell��� ���

class Shell�� � public ResizeEventRole �Shell��� ���

class ShellClass � public XActionRole �Shell��� ���

typedef ShellConstruct�ShellClass� ShellCClass�

�� basic part of widget�window for all canvas widgets

class Canvas�� � public XWindowRole �XFormClass�empty� ���

class Canvas�� � public ProxyHandleRole �ShellClass�Canvas��� ���

class Canvas�� � public XVisualProxytRole �Canvas��� ���

class Canvas�� � public PseudoColorProxyRole �Canvas��� ���

class Canvas�� � public XGCProxyRole �Canvas��� ���

class Canvas�� � public BufferRole �char�Canvas��� ���

class Canvas�� � public BufferPResizeRole ���Canvas��� ���

class Canvas�� � public ResizePAnnounceRole �����Canvas��� ���

class Canvas�� � public MouseAnnounceRole ���Canvas��� ���

class Canvas�� � public MouseEventRole �Canvas��� ���

class Canvas�� � public KeyPressAnnounceRole ���Canvas��� ���

class CanvasClass � public KeyPressEventRole �Canvas��� ���

��

�� special Viewport widget class that draws colorbar

class Color� � public ColorbarRole �char�CanvasClass� ���

class Color� � public ColorbarPResizeRole ���Color�� ���

class Color� � public XImageRole �Color�� ���

class Color� � public ImagePResizeRole ���Color�� ���

class ColorbarClass � public ResizeEventRole �Color�� ���

typedef ViewportConstruct�Canvas���ShellClass�

ColorbarClass� ColorbarCClass�

�� general image display Viewport widget class

class Viewport� � public XImageRole �CanvasClass� ���

class Viewport� � public ImagePResizeRole ���Viewport�� ���

class ViewportClass � public ResizeEventRole �Viewport�� ���

typedef ViewportConstruct�Canvas���ShellClass�

ViewportClass� ViewportCClass�

�� forward declare Main renderer class

class MRendClass�

�� class for holding image data

class ImgBuf� � public BufferRole �short�empty� ���

class ImgBuf� � public ProxyHandleRole �MRendClass�ImgBuf�� ���

class ImgBufClass � public ScaleMapProxyRole �ImgBuf�� ���

typedef OneHandleConstruct�ImgBuf��MRendClass�

ImgBufClass� ImgBufCClass�

�� render class for transforming data from image to window

class Rend�� � public Transform�DRole �empty� ���

class Rend�� � public ProxyHandleRole �ImgBufClass�Rend��� ���

class Rend�� � public SrcBufferProxyZoneRole �short�Rend��� ���

class Rend�� � public ScaleMapProxyRole �Rend��� ���

class Rend�� � public ProxyHandleRole �ViewportClass�Rend��� ���

class Rend�� � public DstBufferProxyZoneRole �char�Rend��� ���

class Rend�� � public BufferZoneResizeRole �Rend��� ���

class Rend�� � public XImageProxyRole �Rend��� ���

class Rend�� � public MouseAnnounceRole ���Rend��� ���

class Rend�� � public MouseTransformRole �Rend��� ���

class Rend�� � public MouseListenProxyRole �Rend��� ���

class Rend�� � public KeyPressAnnounceRole ���Rend��� ���

class Rend�� � public KeyPressListenProxyRole �Rend��� ���

class Rend�� � public RenderRole �Rend��� ���

class Rend�� � public RenderPResizeRole ���Rend��� ���

��

class Rend�� � public ResizePAnnounceRole �����Rend��� ���

class RendClass � public ResizeListenProxyRole �Rend��� ���

typedef TwoHandleConstruct�Rend���ImgBufClass�

Rend���ViewportClass�

RendClass� RendCClass�

�� special renderer for main display

class MRend�Class � public PseudoColorProxyRole �Rend��� ���

class MRend�Class � public ScaleMapRole �MRend�� ���

class MRend�Class � public RenderRole �MRend�� ���

class MRend�Class � public RenderPResizeRole ���MRend�� ���

class MRendClass � public ResizeListenProxyRole �MRend�� ���

typedef TwoHandleConstruct�Rend���ImgBufClass�

Rend���ViewportClass�

MRendClass� MRendCClass�

class Magni�� � public ProxyHandleRole �RendClass�empty� ���

class Magni�� � public RenderProxyRole �Magni��� ���

class Magni�� � public MouseMagnifyRole �Magni��� ���

class Magni�� � public ResizeListenProxyRole �Magni��� ���

class Magni�� � public KeyPressListenProxyRole �Magni��� ���

class Magni�� � public ProxyHandleRole �VRendClass�Magni��� ���

class Magni�� � public MouseListenProxyRole �Magni��� ���

class Magni�� � public ProxyHandleRole �RendClass�Magni��� ���

class MagniClass � public MousePListenProxyRole ���Magni��� ���

typedef ThreeHandleConstruct�Magni���RendClass�

Magni���MRendClass�

Magni���RendClass�

MagniClass� MagniCClass�

�� class for reading image data

class File� � public ProxyHandle�Role �ImgBufClass�empty� ���

class File� � public BufferProxyRole �short�File�� ���

class FileClass � public FileReadRole �ReadArray�short��File�� ���

typedef FileConstructorRole�ImgBufClass�FileClass� FileCClass�

int main	int argc� char� argv��
 �

ShellCClass form	 windowtest � form �argc�argv
�

ViewportCClass magnifier	 magnifier ��form
�

ViewportCClass navigator	 navigator ��form
�

ViewportCClass viewport	 viewport ��form
�

��

ColorbarCClass colorbar	 colorbar ��form
�

ImgBufCClass imbuf	NULL
�

FileCClass readfile	argv�����imbuf
�

MRendCClass mainrender	�imbuf��viewport
�

mainrender�setHistogram	�
�

mainrender�setScaleMap	
�

imbuf�initializeHandle�	�mainrender
�

RendCClass navirender	�imbuf��navigator
�

RendCClass magrender	�imbuf��magnifier
�

MagniCClass magcontrol	�magrender��mainrender��navirender
�

form�realize	
�

form�sync	
�

form�start	
�

return ��

�

VITA

Michael VanHilst was born in Amsterdam	 the Netherlands	 in ����� He graduated

from Washburn Senior High School in Minneapolis	 Minnesota	 in ����� From ����

to ����	 he attended the Massachusetts Institute of Technology	 earning a Bachelor of

Arts degree in Art and Design from the Department of Architecture	 and Bachelor of

Urban Studies and Master of City Planning degrees from the Department of Urban

Studies� In ���� and ���� he worked as the Director of Community Development for

the city of Grinnell	 Iowa� From ���� until ���� he worked as a hardware specialist and

computer programmer for the Smithsonian Astrophysical Observatory	 in Cambridge	

Massachusetts� In ���� he took a year o� to work as a research associate at the

University of Paris	 at Jussieu� In ���� he worked as a contractor at IBM
s T�J�

Watson Research Center� He received a Master
s degree in Computer Science from

the University of Washington in ����	 and the Ph�D� in �����

